
sponse in cutaneous CHS. The finding that
topical application of D9-THC reduced allergic
inflammation points to the promising potential of
developing pharmacological treatments (24) with
the use of selective CB receptor agonists or
FAAH inhibitors.
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Genome-Wide Mapping of in Vivo
Protein-DNA Interactions
David S. Johnson,1* Ali Mortazavi,2* Richard M. Myers,1† Barbara Wold2,3†

In vivo protein-DNA interactions connect each transcription factor with its direct targets to form a
gene network scaffold. To map these protein-DNA interactions comprehensively across entire
mammalian genomes, we developed a large-scale chromatin immunoprecipitation assay (ChIPSeq)
based on direct ultrahigh-throughput DNA sequencing. This sequence census method was then
used to map in vivo binding of the neuron-restrictive silencer factor (NRSF; also known as REST, for
repressor element–1 silencing transcription factor) to 1946 locations in the human genome. The
data display sharp resolution of binding position [±50 base pairs (bp)], which facilitated our
finding motifs and allowed us to identify noncanonical NRSF-binding motifs. These ChIPSeq
data also have high sensitivity and specificity [ROC (receiver operator characteristic)
area ≥ 0.96] and statistical confidence (P < 10−4), properties that were important for inferring new
candidate interactions. These include key transcription factors in the gene network that regulates
pancreatic islet cell development.

Although much is known about transcrip-
tion factor binding and action at specific
genes, far less is known about the com-

position and function of entire factor-DNA
interactomes, especially for organisms with large
genomes. Now that human, mouse, and other
large genomes have been sequenced, it is
possible, in principle, to measure how any
transcription factor is deployed across the entire
genome for a given cell type and physiological
condition. Such measurements are important for
systems-level studies because they provide a
global map of candidate gene network input
connections. These direct physical interactions
between transcription factors or cofactors and the

chromosome can be detected by chromatin
immunoprecipitation (ChIP) (1). In ChIP ex-
periments, an immune reagent specific for a
DNA binding factor is used to enrich target DNA
sites to which the factor was bound in the living
cell. The enriched DNA sites are then identified
and quantified.

For the gigabase-size genomes of vertebrates,
it has been difficult to make ChIP measurements
that combine high accuracy, whole-genome com-
pleteness, and high binding-site resolution. These
data-quality and depth issues dictate whether pri-
mary gene network structure can be inferred with
reasonable certainty and comprehensiveness, and
how effectively the data can be used to discover
binding-site motifs by computational methods.
For these purposes, statistical robustness, sam-
pling depth across the genome, absolute signal
and signal-to-noise ratio must be good enough
to detect nearly all in vivo binding locations for
a regulator with minimal inclusion of false-
positives. A further challenge in genomes large
or small is to map factor-binding sites with high
positional resolution. In addition to making com-

putational discovery of binding motifs feasible,
this dictates the quality of regulatory site anno-
tation relative to other gene anatomy landmarks,
such as transcription start sites, enhancers, introns
and exons, and conserved noncoding features
(2). Finally, if high-quality protein-DNA inter-
actome measurements can be performed rou-
tinely and at reasonable cost, it will open the
way to detailed studies of interactome dynam-
ics in response to specific signaling stimuli or
genetic mutations. To address these issues, we
turned to ultrahigh-throughput DNA sequenc-
ing to gain sampling power and applied size
selection on immuno-enriched DNA to enhance
positional resolution.

The ChIPSeq assay shown here differs
from other large-scale ChIP methods such as
ChIPArray, also called ChIPchip (1); ChIPSAGE
(SACO) (3); or ChIPPet (4) in design, data
produced, and cost. The design is simple (Fig.
1A) and, unlike SACO or ChIPPet, it involves no
plasmid library construction. Unlike microarray
assays, the vast majority of single-copy sites in
the genome is accessible for ChIPSeq assay (5),
rather than a subset selected to be array features.
For example, to sample with similar complete-
ness by an Affymetrix-style microarray design, a
nucleotide-by-nucleotide sliding window design
of roughly 1 billion features per array would be
needed for the nonrepeat portion of the human
genome. In addition, ChIPSeq counts sequences
and so avoids constraints imposed by array
hybridization chemistry, such as base composition
constraints related to Tm, the temperature at which
50% of double-stranded DNA or DNA-RNA
hybrids is denatured; cross-hybridization; and
secondary structure interference. Finally, ChIPSeq
is feasible for any sequenced genome, rather than
being restricted to species for which whole-
genome tiling arrays have been produced.

ChIPSeq illustrates the power of new se-
quencing platforms, such as those from Solexa/
Illumina and 454, to perform sequence census
counting assays. The generic task in these appli-
cations is to identify and quantify the molecular
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contents of a nucleic acid sample whose genome
of origin has been sequenced. The very large num-
bers of short individual sequence reads produced
by these instruments (currently ~400,000 reads
of 200 nucleotides (nt), or ~40 million reads of
25 nt, per instrument run, depending on the
platform used) are extremely well suited to mak-
ing direct digital measurements of the sequence
content of a nucleic acid sample. By determin-
ing a short sequence read from each of many
(105 to 107) randomly selected molecules from
the sample and then informatically mapping
each sequence read onto the reference genome,
the identity of each starting molecule is learned,
and its frequency in the sample is calculated.
Desired levels of sensitivity and statistical
certainty needed to detect rare molecular species
can be achieved, in principle, by adjusting the
total number of sequence reads. Sequence cen-
sus assays do not require knowing in advance
that a sequence is of interest as a promoter, en-
hancer, or RNA-coding domain, as most cur-
rent microarray designs do. Below, we use the
Solexa/Illumina platform, because high-read
numbers contribute to high sensitivity and com-
prehensiveness in large genomes.

We used ChIPSeq to build a high-resolution
interactome map for human neuron-restrictive
silencer factor (NRSF; also known as REST, for
repressor element–1 silencing transcription
factor). This zinc finger repressor negatively reg-
ulates many neuronal genes in stem and progen-
itor cells and in nonneuronal cell types, such as
the Jurkat T cell line studied here (6). A primary
reason for selecting NRSF as a test case is that
prior studies provide a large set of known “gold-
standard” target genes, including more than 80
in vivo binding sites defined by ChIP-QPCR
(quantitative real-time fluorescence polymerase
chain reaction) (7). A subset of these genes has
also been tested for regulatory function by trans-
fection assays (8). In addition, the DNA motif
bound by NRSF, called NRSE (also called RE1),
is long (21 bp) and well-specified (8). This has
led to a rich group of computational models for
the site and for all its occurrences in the human
genome (7, 9–11). These sites provide a frame-
work of explicit predictions that can now be
tested by measuring repressor binding globally.
Finally, there is a high-quality monoclonal
antibody (12) that recognizes NRSF efficiently
in ChIP experiments (7).

We prepared two DNA samples for each
ChIPSeq experiment: an NRSF/REST–enriched
ChIP sample and a companion control sample
of the same fixed chromatin, but without immuno-
enrichment. In an effort to increase positional
precision and to provide optimal substrate for
the Solexa/Illumina sequencing platform, we
introduced a size-selection step after cross-link
reversal (Fig. 1A and fig. S2) (5). DNA se-
quencing of each sample was performed by the
Solexa/Illumina protocol (13). Two to 5 million
25-nt sequence reads were produced per sample,
of which about half mapped to single sites in the

human genome (table S1). Sequence reads that
map to multiple sites in the genome were re-
moved from subsequent analysis. This eliminates
sequences in simple repeats, some complex re-
peats, and also 25-nt segments that are not unique
by chance. The location of each remaining unique
sequence read in the genome was recorded. To
accommodate polymorphisms relative to the
reference genome, up to two mismatches were
allowed. The resulting sequence read distribu-
tion was processed with a ChIPSeq peak locator
algorithm developed for this purpose (5). The
algorithm finds a local concentration of sequence
hits (a location cluster) and, within that loca-
tion, calls a peak. We then required of these a
minimum fivefold enrichment of sequence reads
in the ChIP sample relative to the corresponding
location in the control. Fivefold enrichment is a

conservative choice among enrichment thresh-
olds commonly used in contemporary large-
scale ChIP studies. A location that passed these
criteria and also had 13 or more independent
sequence reads (a threshold value selected based
on the sensitivity and specificity analysis de-
scribed below) was called an NRSF-positive
binding event.

An example of primary ChIPSeq data from
two independent experiments is shown in Fig.
1B for the NEUROD1 locus. This positive
signal, which has intermediate signal intensity
and statistical certainty (P = 8 × 10−6), identifies
a novel NRSF-binding target. The NRSF/REST
sequence-tag distribution centers directly over
the only canonical NRSE motif in a 4-kb region,
which is located in the open reading frame of
the NEUROD1 gene. This site was called a

Fig. 1. ChIPSeq discovers NRSF/REST
protein-DNA binding events with high
resolution on a genome-wide scale. (A)
Generalized scheme of ChIPSeq begins
with ChIP, followed by size selection for
recovered material (5), followed by
standard preparation for Solexa/Illumina
sequencing. An optional preamplification
step after immuno-enrichment and
before size selection can be inserted to
work from smaller cell number input
(used in experiment 2 below) (5). (B)
Close-up view of ChIPSeq data mapped
to a novel NRSF-binding site (NRSE; black
arrowhead) located in the NEUROD1
gene. Experiment 1 (no preamplification)
and experiment 2 (with preamplification).
Output from the peak-call algorithm is
shown for this locus (red arrowhead), and
corresponds closely with the sole NRSE
in the NEUROD locus (black arrowhead).
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ChIPSeq peak by the locator algorithm [open
source available at (14)]. A previous study had
implicated NRSF in repression of NEUROD1,
but had failed to find a local site computation-
ally. The authors theorized long-distance repres-
sion to explain the effect (15), but our results
suggest a simpler explanation of a degenerate
site within the NEUROD1 gene itself. Over the
entire primary data set (tables S2 and S3), the
distribution of sequence-tag number per location
ranged from the threshold value of 13 sequence
tags to a maximum of 6718 tags at the highest
signal (Fig. 2A and fig. S3). The two ChIPSeq
experiments produced similar results (fig. S2),
mapping 1946 shared enriched locations, most
of which occur in or near 1020 genes.

NRSF-binding sites previously identified by
QPCR or transfection assays (7, 8) plus a set of
known negatives (5) were used to measure sen-
sitivity (successful detection of true positives)
and specificity (successful rejection of true neg-

atives) of the ChIPSeq assay. A ROC (receiver
operator characteristic) analysis provides a way
of measuring and graphically portraying sensi-
tivity (fraction true positive on the y axis) versus
specificity (1 – the fraction of false-positives,
displayed on the x axis) (Fig. 2B). Perfect sensi-
tivity and specificity would produce an ROC
curve that traces the y axis to a value of 1.0,
which would extend across all possible x values
to produce an area under the curve of 1.0. In
contrast, entirely random classification by chance
would produce an ROC area of ~0.5. The ob-
served ROC areas are high at 0.96 (shown) and
0.97 for the two independent experiments. The
selected threshold of 13 sequence reads per
region required for inclusion in the ChIPSeq
interactome corresponds to a sensitivity of 87%
and a specificity of 98%. We conclude that the
ChIPSeq NRSF interactome measurements are
accurate and, as suggested by P values (table
S2), statistically robust. For rough comparison, a

recent ChIPPet study of the p53 interactome did
not measure these parameters, but investigators
estimated that less than 35% of the largest group
of positive signals (Pet2 sites, which were de-
fined by two paired end tags) are true sites,
whereas the much more certain and smaller
class (Pet3-and-above sites) likely misses more
than half of true positives (4). In general, we
expect that differences in immune reagent qual-
ity, epitope availability, and other aspects of
design that affect all ChIP experiments, as well
as interactome structure itself, will contribute to
differences between studies.

We next assessed the precision of ChIPSeq
site location relative to 771 computationally
high-scoring NRSE motifs in the genome that
also have positive ChIPSeq signals, by measur-
ing the distance from the experimental ChIPSeq
peak to the center of the computational NRSE
sequence motif. In this group, 754 sites were
ChIPSeq-positive in both experiments, and the
center of a 21-bp NRSE motif was within ±
50 bp of the called ChIPSeq peak (5) for 94%
of these (Fig. 2C). The resolution, which de-
pends in part on size selection of sheared chro-
matin after immuno-enrichment (5), is much
higher than is typical for ChIPchip or ChIPSAGE
(± 500 to 1000 bp) (3, 16).

How comprehensive are the NRSF ChIPSeq
measurements? Several lines of evidence ad-
dress this question. First, as shown in Fig. 2D,
virtually all strong canonical NRSF motif in-
stances across the human genome were detect-
ably occupied. We defined strong sites as those
having ≥90% match to a previously developed
motif model (a position-specific frequency
matrix), which is based on evolutionarily con-
served site instances across multiple mammalian
genomes (5, 7). This high representation of de-
tectable binding suggests that no strong sites
were missed by undersampling. It also implies
that all sites are accessible for NRSF/REST-
binding in Jurkat cells, at least part-time in some
individual cells, although the degree of accessi-
bility might vary and may account for wide
differences in the number of tags per site (Fig.
2A). Second, we observed ChIPSeq-positive sig-
nals for sites previously studied in detail by
transfection analysis (8), and they correspond to
a wide range of ChIPSeq signals, with all but
one scoring positive in both ChIPSeq experi-
ments. Taken together with the sensitivity results
(Fig. 2B), these observations suggest that the
NRSF/REST interactome measurements are
genome-comprehensive and have been sampled
deeply enough to include most sites known by
any other criteria to be biologically active, even
if relatively weakly. This level of genome com-
pleteness is attributable to the depth of Solexa/
Illumina sequence sampling and is substantially
greater than in prior studies of the adenosine
3´,5´-monophosphate (cAMP) response element–
binding protein (CREB) interactome measured
by SACO (3) and the p53 interactome measured
by ChIPPet (4).

Fig. 2. (A) Histogram of all ChIPSeq-positive regions, as a function of sequence read number, that
map within that region; zero (white), one (blue), or two or more (red) canonical motif instances
defined as those scoring ≥70% match to the position-specific frequency matrix (PSFM) model of
the NRSF-binding site (7). (B) ROC analysis with area under the curve >0.96 for experiment 2
(shown) and >0.97 for experiment 1. This measures the performance of ChIPSeq in detecting
previously validated true positives (83) and true negatives (130), as described in the text and (5).
The threshold used for subsequent analysis corresponds to 87% and specificity 98%, as indicated
by the arrowhead. ChIPSeq false-negatives corresponded to the lowest QPCR-positive validation
values. (C) Distribution of the distance from the center of 771 high-scoring canonical NRSE motifs
[84% or higher match to the PSFM motif model (7)] in ChIPSeq-enriched regions (experiment 1).
In this example, 46% of peaks fall within the boundaries of NRSE (here, +10 to –10 bp), and 94%
of the canonical NRSEs fall within 50 bp of the called experimental peak. (D) Site occupancy
detected by ChIPSeq for NRSE motifs in Jurkat cells as a function of PSFM score (7).
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We next asked whether NRSF binding in or
near promoters is correlated with low levels of
transcription, as expected for a transcriptional
repressor. To answer this question, we looked
for high-confidence promoter predictions (5)
that occur within 1 kb of a ChIPSeq peak. We
then assessed genome-wide transcript levels in
Jurkat cells by hybridizing labeled RNA to
Illumina RefSeq8 Sentrix arrays. The subset of
230 transcripts corresponding to promoters near
NRSF-binding sites had significantly lower (P =
1 × 10−11) transcript signals than the full set of
20,589 transcripts (fig. S5). This argues that
NRSF binding near promoters is significantly
associated with transcriptional repression in
these cells.

The positional resolution and low number of
false-positives in these experiments can greatly
facilitate motif-finding algorithms. The effect is
to elevate the frequency of occurrence of true
motifs within the input DNA relative to back-
ground sequences. This can improve signal-to-
noise and also greatly reduce the run times for
many algorithms. Much is known about the
canonical NRSF-binding site (NRSE motif)
(7, 10, 17), and this allowed us to ask if that site
emerges when a sample of the experimental in-
teractome peak domains are used. We first ap-
plied the motif-finding algorithm MEME (18) to
all sites in the top 10% of signal intensity (100-bp
segments from 198 regions having 500 reads or
more). MEME returned the full previously known
motif (table S4). Single or multiple matches to this
canonical motif, using a 70% match threshold,
account for 75% of all ChIPSeq regions mapped
in this study.

We next focused attention on those remain-
ing ChIPSeq-positive regions that have 300 or
more ChIPSeq reads, yet have no canonical
motif match. There are 22 such locations, and
when they were run in MEME, only two can-
didate motifs stood out (table S5). By inspec-
tion, the large canonical NRSF-binding motif of
21 bp is naturally subdivided into two promi-
nent, nonidentical, nonpalindromic half sites
(Fig. 3A). The two motifs from the MEME search
correspond directly to the separate left and right
sides of the canonical motif. We next asked if
these motifs occur at other ChIPSeq-binding lo-
cations and if they are organized in any discer-
nible pattern. A distinctive pattern was discovered
within 50 bp of many ChIPSeq peaks, in which
left and right half-site motifs are separated by
additional “spacer” sequence that increases the
center-to-center distance from the canonical
11 bp to 16 to 19 bp, or decreases it by 1 bp to
10 bp (Fig. 3B and fig. S6). Thus, the canonical
site has two central positions that have no
sequence specificity, and the noncanonical
group is similarly oriented but has increased
the separation distance by an additional 5 to 9
bp (Fig. 3C). These linked half sites, oriented
with respect to each other in the same way as
in the canonical site, occur in NRSF ChIPSeq
binding domains in a statistically significant
manner relative to random sequence windows in
the genome (c2 = 1309 for the half-site distance
of 17, P value of 0) and account for 197 regions
lacking a canonical motif (Fig. 3B and fig. S4).
We also found that some binding locations have
multiple clustered occurrences of noncanonical
motif(s) along with a canonical one.

There are no structural data available for
NRSF, so we cannot relate this new family of
binding-site motifs to a known DNA binding
structure. However, the protein has eight zinc
fingers in its DNA binding domain, and other
C2H2 zinc finger proteins such as Zif268 bind
DNAwith three fingers per 10-bp turn, but they
show considerable strain when binding with six
fingers (19). This makes simultaneous binding
of one molecule of NRSF to these noncanonical
half-site configurations plausible, but it is also
possible that the protein is bound to only one
half site at a time by using a subset of its fingers
in these cases. It will be interesting to learn if
there are other functional and molecular charac-
teristics that set these sites apart. For example,
do the different NRSF co-repressors differ in
their interactions at noncanonical sites compared
with canonical ones (20, 21)?

We also asked whether half sites are sig-
nificantly enriched in our ChIPSeq neighbor-
hoods, without regard to orientation or spacing,
relative to expectations based on their occur-
rence in the genomes, and found that these
regions are greatly enriched for left-side half
sites (c2 = 3070) and right-side half sites (c2 =
11,674). This range of configurations, from
concentrated half sites to the noncanonical 16-
to 19-bp–spaced left and right sites, to the ca-
nonical 11-bp–spaced full site, is quite striking.
Significant NRSF binding occurs in vivo, ac-
cording to our data, at all three kinds of loci.
Because the half sites are much shorter than the
full 21-bp NRSE motif, they also occur widely
over the genome, presumably mainly by chance.
This would mean that there is a rich pool of

Fig. 3. (A) Canonical NRSF-binding motif
WebLogo (26). Its left and right half sites
have a center-to-center distance of 11 bp.
(B) Histogram of half-site distances in
ChIPSeq-enriched regions, showing the
observed (blue) and expected (white) counts
(based on frequency in the genome). In
addition to the expected canonical peak at
distance 11 bp, there is also significant
enrichment of half sites with noncanonical
distances of 16 to 20 bp. (C) WebLogo of
noncanonical NRSE with half-site distance of
17, showing the lack of conservation in the
spacer nucleotides. (D) The 2214 NRSF-
binding motifs predicted in the 1946
ChIPSeq-positive regions that contain canon-
ical, noncanonical, or only half-site motifs.
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possible binding sites from which higher af-
finity canonical sites could be gradually made
and tested in evolution, as suggested previous-
ly (10). However, these sites were considered
unlikely to interact with NRSF specifically
(10), whereas, within the noncanonical motif
family we define here, sites bind on their own,
especially when clustered (fig. S6). This sug-
gests a plausible multistep path by which the

target-site repertoire could evolve, beginning
with clustered partial sites, passing through an
intermediate and more specific orientation and
spacing (the 10- or 16- to 19-bp–spaced family
here), and eventually becoming refined into the
canonical site (the 11-bp–spaced classic binding
motif). Because there are more than 500 multi–
zinc finger transcription factors encoded in the
genome (22), many of which are evolving

rapidly in humans and mice, this strategy might
be used by other members of the zinc finger
family.

We found that genes encoding 110 transcrip-
tion factors, 22 microRNAs, and five splicing
regulators were occupied by NRSF. NRSEs
occur prominently in introns (table S6), includ-
ing a noncanonical site (P = 4 × 10−5) located
about 500 bp downstream of the transcription
start site of the NRSF gene itself, which suggests
the possibility of negative autoregulatory feed-
back. We also found, as expected, that NRSF-
bound loci are highly enriched in gene ontology
(GO) terms related to neurons and their de-
velopment (Fig. 4A). The enrichment for the
experimentally determined sites exceeded that
achieved for any computationally predicted tar-
get gene cohort. Synaptic transmission and
nervous system development rank in the top
three GO terms among 6000, with P values for
overrepresentation of the NRSF target genes of
10−24 and 10−17 (5) (Fig. 4A). This group in-
cludes a set of transcription factors that have not
previously been suggested as NRSF targets, but
are known to be critical in the gene network that
drives islet cell development in the pancreas.
The transcription factors NEUROD1/BETA2,
hepatocyte nuclear factors HNF4a and HNF6/
Onecut1, and Hes1 were all detected here for
the first time as in vivo binding targets of NRSF,
and together with Neurogenin3, which is a
previously identified target (7), they are posi-
tioned critically in the regulatory network that
controls pancreatic b cell development (Fig. 4B)
(23). Although in vivo binding does not en-
sure NRSF repression activity, these regula-
tors are known to function as positive drivers
of pancreatic neuroendocrine development. If
NRSF repression is active at all these sites, as
might be the case in progenitor cells, the cir-
cuit would be effectively blocked. In this hy-
pothesis, NRSF acts as a permissivity factor
gating entry into and progress through the de-
velopmental pathway.

These pancreatic network sites are among
the more modest ChIPSeq signals, ranging from
55 sequence reads for HNF6 to 202 sequence
reads for NeuroD1, values that are comfortably
above the significance threshold of 13 (set on
the basis of sensitivity/specificity considerations
and known regulatory targets of Fig. 2, A and
B), yet they fall in the bottom quartile. Thus,
these ChIPSeq data were statistically robust
enough to map parts of this gene network that
might otherwise have gone undetected or been
highly uncertain (Fig. 2A and fig. S3). There are
precedents in other systems that show that
relatively weak sites are biologically important,
specifically because they are, in the biochemical
binding sense, suboptimal. For example, in
Caenorhabditis elegans, the Pha4/FoxA factor
is the key activator of a large interactome, and
a subset of target genes has suboptimal se-
quences and numbers of sites (24). In that sys-
tem, when binding is suboptimal, it is believed

Fig. 4. (A) Gene ontology (GO) analysis of the computationally predicted cohort of NRSF target
genes [genes scoring as ≥84% match to the previously developed computational model for the
NRSE motif (7)] compared with ChIPSeq-positive genes (right). P values for enrichment of GO terms
above the significance threshold of 1.59 × 10−6, which accounts for multiple hypothesis testing (7),
are indicated by the color scale; GO terms below the significance threshold are in white boxes.
ChIPSeq NRSE target genes are most enriched in synaptic transmission, nervous system
development, and ion channel−activity functions (tables S1 and S2). (B) ChIPSeq data identified
new candidate connections (blue) between NRSF and members of the pancreatic islet b cell–
specification gene regulatory network [adapted from (23)]. Key transcription factors bound by
NRSF, including ngn3 and neuroD1, occupy positions high in the network that govern network
activation and progression. ChIPSeq data also confirmed previously known NRSF targets (cyan) that
include terminal differentiation genes such as SCG10/stmn2 (25).
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to help program the temporal order of action dur-
ing development, with poor binders turning on at
later times in the developmental progression,
when Pha4 levels are highest. By analogy, the
regulators that govern the pancreatic network
may be released from NRSF repression rela-
tively early in down-regulation of the repressor
to create a permissive state that must be estab-
lished before the neuroendocrine development
program is launched. Also following this logic,
SCG10/Stmn2 is a classic NRSF target gene that
is expressed later in development in differ-
entiated islet cells, and it displayed relatively
higher ChIPSeq tag scores than most of the
transcription factors that are positioned higher
and earlier in the network. Independent evidence
suggests that SCG10/Stmn2 expression depends
on relief from NRSF-mediated repression in
islet cells (25). Targets of the regulatory class
highlighted here (Fig. 4B) can also participate in
positive autoregulatory and cross-regulatory
interactions that we expect would stabilize and
push forward the circuit once it begins (23).
This makes a “protective” repressor, active in
nonpancreatic cell types or progenitor cells, an
attractive piece of regulatory logic.

The initial picture we have of the experi-
mentally determined NRSF/REST interactome
has been drawn for one cell type (Jurkat T cell
line), and T cells express this factor at relatively
high levels. In this cell environment, the inter-
actome is composed of three broad classes of
target loci with respect to binding motifs. First
are loci defined by near-optimal canonical mo-
tifs, and virtually all of these bound the factor
detectably in vivo. This suggests that for bio-
chemically optimal sites, there is sufficient chro-
matin access and high enough DNA affinity to
establish measurable occupancy, although the
strength of the ChIPSeq signal among these
sites varied over wide range. Second are loci
containing instances of the noncanonical motif
family (Fig. 3) or sites that are weaker matches
to the canonical 21-bp site. Binding of sites in
this class could not be predicted solely on the
basis of their motif sequence. Several hundred
instances showed significant binding, whereas
thousands of others in this group had no de-
tectable ChIPSeq signal. Binding-motif prop-
erties we do not yet appreciate, differential

chromatin access, or epitope exposure for subset
of NRSF-containing complexes might discrim-
inate the minority ChIP-positives in this group
from the majority that are nonbinding. These
observations argue that global experimental data
are needed to discriminate motif instances
occupied in vivo from many others that appear
similar in motif quality, but are not similarly
occupied, even for a factor like NRSF/REST,
which has a well-specified binding-motif family.
Finally, there is a third small, but interesting,
class that binds NRSF/REST reproducibly, and
in some cases quite robustly, but lacks any
identifiable NRSE motif except for the presence
of half sites (tables S2 and S7). It is uncertain if
these are explained by their half-site content, be-
cause they make up a tiny minority of loci with
superficially similar half-site content. This raises
the possibility that NRSF/REST might associate
indirectly, rather than directly, with a limited
number of specific chromosomal locations.

ChIPSeq, as performed here, is relatively
cost-effective; Solexa/Illumina platform sequenc-
ing costs per experiment are currently about half
that of the most comprehensive human whole-
genome tiling arrays. ChIPSeq sampling that is
10 to 20 times deeper than was used here is
plausible now, within the general range of mi-
croarray costs, and this capacity may be needed
for interactomes having many more sites per
genome than NRSF. For example, it is possible
that some widely used transcription cofactors or
chromatin remodeling complexes might have
on the order of 104 to 105 true-positive sites dis-
tributed over a wide dynamic range of occu-
pancy levels, and such interactome structures
will require correspondingly deeper sequence
sampling. Other ultrahigh-throughput sequenc-
ing platforms, such as the one from 454 Life
Sciences, could also be used to assay ChIP
products, but whatever sequencing platform
is used, our results indicate that read num-
ber capacity and input ChIP DNA size are key
parameters.
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