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Global landscape of protein complexes in
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Identification of protein–protein interactions often provides insight into protein function, and many cellular processes are
performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins
of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/
ionization–time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage
and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the
protein–protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from
2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein–protein interactions
involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes
averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional
interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual
proteins as well as functional genomics and systems biology.

Elucidation of the budding yeast genome sequence1 initiated a
decade of landmark studies addressing key aspects of yeast cell
biology on a system-wide level. These included microarray-based
analysis of gene expression2, screens for various biochemical activi-
ties3,4, identification of protein subcellular locations5,6, and identify-
ing effects of single and pairwise gene disruptions7–10. Other efforts
were made to catalogue physical interactions among yeast proteins,
primarily using the yeast two-hybrid method11,12 and direct purifi-
cation via affinity tags13,14; many of these interactions are conserved in
other organisms15. Data from the yeast protein–protein interaction
studies have been non-overlapping to a surprising degree, a fact
explained partly by experimental inaccuracy and partly by indications
that no single screen has been comprehensive16.

Proteome-wide purification of protein complexes

Of the various high throughput experimental methods used thus
far to identify protein–protein interactions11–14, tandem affinity
purification (TAP) of affinity-tagged proteins expressed from their

natural chromosomal locations followed by mass spectrometry13,17

has provided the best coverage and accuracy16. To map more
completely the yeast protein interaction network (interactome),
S. cerevisiae strains were generated with in-frame insertions of TAP
tags individually introduced by homologous recombination at the
3

0
end of each predicted open reading frame (ORF) (http://

www.yeastgenome.org/)18,19. Proteins were purified from 4L yeast
cultures under native conditions, and the identities of the co-
purifying proteins (preys) determined in two complementary
ways17. Each purified protein preparation was electrophoresed on
an SDS polyacrylamide gel, stained with silver, and visible bands
removed and identified by trypsin digestion and peptide mass
fingerprinting using matrix-assisted laser desorption/ionization–
time of flight (MALDI–TOF) mass spectrometry. In parallel, another
aliquot of each purified protein preparation was digested in solution
and the peptides were separated and sequenced by data-dependent
liquid chromatography tandem mass spectrometry (LC-MS/
MS)17,20–22. Because either mass spectrometry method often fails to
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identify a protein, we used two independent mass spectrometry
methods to increase interactome coverage and confidence. Among
the attempted purifications of 4,562 different proteins (Supplemen-
tary Table S1), including all predicted non-membrane proteins, 2,357
purifications were successful (Supplementary Table S2) in that at
least one protein was identified (in 1,613 cases by MALDI–TOF mass
spectrometry and in 2,001 cases by LC-MS/MS; Fig. 1a) that was not
present in a control preparation from an untagged strain.

In total, 4,087 different yeast proteins were identified as preys
with high confidence ($99%; see Methods) by MALDI–TOF mass
spectrometry and/or LC-MS/MS, corresponding to 72% of the
predicted yeast proteome (Supplementary Table S3). Smaller pro-
teins with a relative molecular mass (M r) of 35,000 were less likely to
be identified (Fig. 1b), perhaps because they generate fewer peptides
suited for identification by mass spectrometry. We were more
successful in identifying smaller proteins by LC-MS/MS than by
MALDI–TOF mass spectrometry, probably because smaller proteins
stain less well with silver or ran off the SDS gels. Our success in
protein identification was unrelated to protein essentiality (data not
shown) and ranged from 80% for low abundance proteins to over
90% for high abundance proteins (Fig. 1c). Notably, we identified
47% of the proteins not detected by genome-wide western blotting18,
indicating that affinity purification followed by mass spectrometry
can be more sensitive. Many hypothetical proteins not detected by
western blotting18 or our mass spectrometry analyses may not be
expressed in our standard cell growth conditions. Although our
success rates for identifying proteins were 94% and 89% for nuclear
and cytosolic proteins, respectively, and at least 70% in most cellular
compartments (Fig. 1d), they were lower (61% and 59%, respectively)
for the endoplasmic reticulum and vacuole. However, even though we
had not tagged or purified most proteins with transmembrane

domains, we identified over 70% of the membrane-associated
proteins, perhaps because our extraction and purification buffers
contained 0.1% Triton X-100. Our identification success rate was
lowest (49%) with proteins for which localization was not estab-
lished5,6, many of which may not be expressed. We had high success in
identifying proteins involved in all biological processes, as defined by
gene ontology (GO) nomenclature, or possessing any broadly
defined GO molecular function (Fig. 1e, f). We were less successful
(each about 65% success) with transporters and proteins of unknown
function; many of the latter may not be expressed.

A high-quality data set of protein–protein interactions

Deciding whether any two proteins interact based on our data must
encompass results from two purifications (plus repeat purifications,
if performed) and integrate reliability scores from all protein identi-
fications by mass spectrometry. Removed from consideration as
likely nonspecific contaminants were 44 preys detected in $3% of
the purifications and nearly all cytoplasmic ribosomal subunits
(Supplementary Table S4). Although the cytosolic ribosomes and
pre-ribosomes, as well as some associated translation factors, are not
represented in the interaction network and protein complexes we
subsequently identified, we previously described the interactome for
proteins involved in RNA metabolism and ribosome biogenesis22.

We initially generated an ‘intersection data set’ of 2,357 protein–
protein interactions based only on proteins identified in at least
one purification by both MALDI–TOF mass spectrometry and
LC-MS/MS with relatively low thresholds (70%) (Supplementary
Table S5). This intersection data set containing 1,210 proteins was of
reasonable quality but limited in scope (Fig. 2b). Our second
approach added to the intersection data set proteins identified either
reciprocally or repeatedly by only a single mass spectrometry method

Figure 1 | The yeast interactome encompasses a large proportion of the
predicted proteome. a, Summary of our screen for protein interactions.
PPI, protein–protein interactions. b–f, The proportions of proteins

identified in the screen as baits or preys are shown in relation to protein mass
(b), expression level (c), intracellular localization (d) and annotated GO
molecular function (e) and GO biological process (f).
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to generate the ‘merged data set’. The merged data set containing
2,186 proteins and 5,496 protein–protein interactions (Supplemen-
tary Table S6) had better coverage than the intersection network
(Fig. 2b).

To deal objectively with noise in the raw data and improve
precision and recall, we used machine learning algorithms with
two rounds of learning. All four classifiers were validated by the
hold-out method (66% for training and 33% for testing) and ten-
times tenfold cross-validation, which gave similar results. Because
our objective was to identify protein complexes, we used the hand-
curated protein complexes in the MIPS reference database23 as our
training set. Our goal was to assign a probability that each pairwise
interaction is true based on experimental reproducibility and mass
spectrometry scores from the relevant purifications (see Methods). In
the first round of learning, we tested bayesian inference networks and
28 different kinds of decision trees24, settling on bayesian networks
and C4.5-based and boosted stump decision trees as providing the
most reliable predictions (Fig. 2a). We then improved performance
by using the output of the three methods as input for a second round
of learning with a stacking algorithm in which logistic regression was
the learner25. We used a probability cut-off of 0.273 (average 0.68;
median 0.69) to define a ‘core’ data set of 7,123 protein–protein
interactions involving 2,708 proteins (Supplementary Table S7) and a
cut-off of 0.101 (average 0.42; median 0.27) for an ‘extended’ data set
of 14,317 protein–protein interactions involving 3,672 proteins
(Supplementary Table S8). The interaction probabilities in Sup-
plementary Tables S7 and S8 are likely to be underestimated because
the MIPS complexes used as a ‘gold standard’ are themselves
imperfect26. We subsequently used the core protein–protein inter-
action data set to define protein complexes (see below), but the
extended data set probably contains at least 1,000 correct interactions
(as well as many more false interactions) not present in the core data
set.

The complete set of protein–protein interactions and their associ-
ated probabilities (Supplementary Table S9) were used to generate
a ROC curve with a performance (area under the curve) of 0.95
(Fig. 2b). Predictive sensitivity (true positive rate) or specificity (false
positive rate), or both, are superior for our learned data set than for
the intersection and merged data sets, each previous high-through-
put study of yeast protein–protein interactions11–14, or a bayesian
combination of the data from all these studies27 (Fig. 2b).

Identification of complexes within the interaction network

In the protein interaction network generated by our core data set of
7,123 protein–protein interactions, the average degree (number of

interactions per protein) is 5.26 and the distribution of the number of
interactions per protein follows an inverse power law (Fig. 2c),
indicating scale-free network topology28. These protein–protein
interactions could be represented as a weighted graph (not shown)
in which individual proteins are nodes and the weight of the arc
connecting two nodes is the probability that interaction is correct.
Because the 2,357 successful purifications underlying such a graph
would represent .50% of the detectably expressed proteome18,
we have typically purified multiple subunits of a given complex. To
identify highly connected modules within the global protein–protein
interaction network, we used the Markov cluster algorithm, which
simulates random walks within graphs29. We chose values for the
expansion and inflation operators of the Markov cluster procedure
that optimized overlap with the hand-curated MIPS complexes23.
Although the Markov cluster algorithm displays good convergence
and robustness, it does not necessarily separate two or more com-
plexes that have shared subunits (for example, RNA polymerases I
and III, or chromatin modifying complexes Rpd3C(S) and
Rpd3C(L))30,31.

The Markov cluster procedure identified 547 distinct (non-
overlapping) heteromeric protein complexes (Supplementary
Table S10), about half of which are not present in MIPS or two
previous high-throughput studies of yeast complexes using affinity
purification and mass spectrometry (Fig. 3a). New subunits or
interacting proteins were identified for most complexes that had
been identified previously (Fig. 3a). Overlap of our Markov-cluster-
computed complexes with the MIPS complexes was evaluated (see
Supplementary Information) by calculating the total precision
(measure of the extent to which proteins belonging to one reference
MIPS complex are grouped within one of our complexes, and vice
versa) and homogeneity (measure of the extent to which proteins
from the same MIPS complex are distributed across our complexes,
and vice versa) (Fig. 3b). Both precision and homogeneity were
higher for the complexes generated in this study—even for the
extended set of protein–protein interactions—than for complexes
generated by both previous high-throughput studies of yeast com-
plexes, perhaps because the increased number of successful purifi-
cations in this study increased the density of connections within most
modules. The average number of different proteins per complex is
4.9, but the distribution (Fig. 3c), which follows an inverse power law,
is characterized by a large number of small complexes, most often
containing only two to four different polypeptides, and a much
smaller number of very large complexes.

Proteins in the same complex should have similar function and co-
localize to the same subcellular compartment. To evaluate this, we

Figure 2 | Machine learning generates a core data set of protein–protein
interactions. a, Reliability of observed protein–protein interactions was
estimated using probabilistic mass spectra database search scores and
measures of experimental reproducibility (see Methods), followed by
machine learning. b, Precision-sensitivity ROC plot for our protein–protein
interaction data set generated by machine learning. Precision/sensitivity
values are also shown for the ‘intersection’ and ‘merged’ data sets (see text)

and for other large-scale affinity tagging13,14 and two-hybrid11,12 data sets,
and a bayesian networks combination of those data sets27, all based on
comparison to MIPS complexes. FP, false positive; TP, true positive. c, Plot of
the number of nodes against the number of edges per node demonstrates
that the core data set protein–protein interaction network has scale-free
properties.
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Figure 3 | Organization of the yeast protein–protein interaction network
into protein complexes. a, Pie charts showing how many of our 547
complexes have the indicated percentages of their subunits appearing in
individual MIPS complexes or complexes identified by other affinity-based
purification studies13,14. b, Precision and homogeneity (see text) in
comparison to MIPS complexes for three large-scale studies. c, The
relationship between complex size (number of different subunits) and
frequency. d, Graphical representation of the complexes. This Cytoscape/
GenePro screenshot displays patterns of evolutionary conservation of
complex subunits. Each pie chart represents an individual complex, its
relative size indicating the number of proteins in the complex. The
thicknesses of the 429 edges connecting complexes are proportional to the
number of protein–protein interactions between connected nodes.
Complexes lacking connections shown at the bottom of this figure have ,2
interactions with any other complex. Sector colours (see panel f) indicate the

proportion of subunits sharing significant sequence similarity to various
taxonomic groups (see Methods). Insets provide views of two selected
complexes—the kinetochore machinery and a previously uncharacterized,
highly conserved fructose-1,6-bisphosphatase-degrading complex (see text
for details)—detailing specific interactions between proteins identified
within the complex (purple borders) and with other proteins that interact
with at least one member of the complex (blue borders). Colours indicate
taxonomic similarity. e, Relationship between protein frequency in the core
data set and degree of connectivity or betweenness as a function of
conservation. Colours of the bars indicate the evolutionary grouping.
f, Colour key indicating the taxonomic groupings (and their phylogenetic
relationships). Numbers indicate the total number of ORFs sharing
significant sequence similarity with a gene in at least one organism
associated with that group and, importantly, not possessing similarity to any
gene from more distantly related organisms.
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calculated the weighted average of the fraction of proteins in each
complex that maps to the same localization categories5 (see Sup-
plementary Information). Co-localization was better for the com-
plexes in our study than for previous high-throughput studies but,
not unexpectedly, less than that for the curated MIPS complexes
(Supplementary Fig. S1). We also evaluated the extent of semantic
similarity32 for the GO terms in the ‘biological process’ category for
pairs of interacting proteins within our complexes (Supplementary
Fig. S2), and found that semantic similarity was lower for our core
data set than for the MIPS complexes or the previous study using
TAP tags13, but higher than for a study using protein overproduc-
tion14. This might be expected if the previous TAP tag study
significantly influenced the semantic classifications in GO.

To analyse and visualize our entire collection of complexes, the
highly connected modules identified by Markov clustering for the
global core protein–protein interaction network were displayed
(http://genepro.ccb.sickkids.ca) using our GenePro plug-in for
the Cytoscape software environment33 (Fig. 3d). Each complex is
represented as a pie-chart node, and the complexes are connected by
a limited number (429) of high-confidence interactions. Assignment
of connecting proteins to a particular module can therefore be
arbitrary, and the limited number of connecting proteins could
just as well be part of two or more distinct complexes.

The size and colour of each section of a pie-chart node can be made
to represent the fraction of the proteins in each complex that maps
into a given complex from the hand-curated MIPS complexes
(Supplementary Fig. S3). Similar displays can be generated when
highlighting instead the subcellular localizations or GO biological
process functional annotations of proteins in each complex. Further-
more, the protein–protein interaction details of individual complexes
can readily be visualized (see Supplementary Information).

Evolutionary conservation of protein complexes

ORFs encoding each protein were placed into nine distinct evolu-
tionary groups (Fig. 3f) based on their taxonomic profiles (see
Methods), and the complexes displayed so as to show the evolution-
ary conservation of their components (Fig. 3d). Insets highlight the
kinetochore complex required for chromosome segregation and a
novel, highly conserved complex involved in degradation of fructose-
1,6-bisphosphatase. Strong co-evolution was evident for com-
ponents of some large and essential complexes (for example, 19S
and 20S proteasomes involved in protein degradation, the exosome
involved in RNA metabolism, and the ARP2/3 complex required for
the motility and integrity of cortical actin patches). Conversely, the
kinetochore complex, the mediator complex required for regulated
transcription, and the RSC complex that remodels chromatin have a

Figure 4 | Characterization of three previously unreported protein
complexes and Iwr1, a novel RNAPII-interacting factor. a, Identification of
three novel complexes by SDS–PAGE, silver staining and mass spectrometry.
The same novel complex containing Vid30 was obtained after purification
from strains with other tagged subunits (data not shown). b, Identification
of Iwr1 (interacts with RNAPII). Tagging and purification of unique RNAPII
subunits identified YDL115C (Iwr1) as a novel RNAPII-associated factor
(Supplementary Fig. S5a). Purification of Iwr1 is shown here. c, Genetic
interactions of Iwr1 with various transcription factors. Lines connect genes

with synthetic lethal/sick genetic interactions. d, Microarray analysis on the
indicated deletion strains. Pearson correlation coefficients were calculated
for the effects on gene expression of each deletion pair and organized by
two-dimensional hierarchical clustering. e, Antibody generated against the
amino-terminal amino acid sequence (DDDDDDDSFASADGE) of the
Drosophila homologue of Iwr1 (CG10528) and a monoclonal antibody (H5)
against RNAPII subunit Rpb1 phosphorylated on S5 of the heptapeptide
repeat of its carboxy-terminal domain48 were used for co-localization studies
on polytene chromosomes as previously described47.
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high proportion of fungi-specific subunits. Previous studies have
shown that highly connected proteins within a network tend to be
more highly conserved17,34, a consequence of either functional con-
straints or preferential interaction of new proteins with existing
highly connected proteins28. For the network as a whole, and
consistent with earlier studies, Fig. 3e reveals that the frequency of
ORFs with a large number (.10) of connections is proportional to
the relative distance of the evolutionary group. ‘Betweenness’ pro-
vides a measure of how ‘central’ a protein is in a network, typically
calculated as the fraction of shortest paths between node pairs
passing through a node of interest. Figure 3e shows that highly
conserved proteins tend to have higher values of betweenness.
Despite these average network properties, the subunits of some
complexes (for example, the kinetochore complex) display a high
degree of connectedness despite restriction to hemiascomycetes.
These findings suggest caution in extrapolating network properties
to the properties of individual complexes. We also investigated the
relationship between an ORF’s essentiality and its conservation,
degree of connectivity and betweenness (Supplementary Fig. S4).
Consistent with previous studies17,35, essential genes tend to be more
highly conserved, highly connected and central to the network (as
defined by betweenness), presumably reflecting their integrating role.

Examples of new protein complexes and interactions

Among the 275 complexes not in MIPS that we identified three are
shown in Fig. 4a. One contains Tbf1, Vid22 and YGR071C. Tbf1
binds subtelomeric TTAGGG repeats and insulates adjacent genes
from telomeric silencing36,37, suggesting that this trimeric complex
might be involved in this process. Consistent with this, a hypo-
morphic DAmP allele10 (3 0 untranslated region (UTR) deletion) of
the essential TBF1 gene causes a synthetic growth defect when
combined with a deletion of VID22 (data not shown), suggesting
that Tbf1 and Vid22 have a common function. Vid22 and YGR071C
are the only yeast proteins containing BED Zinc-finger domains,
thought to mediate DNA binding or protein–protein interactions38,
suggesting that each uses its BED domain to interact with Tbf1 or
enhance DNA binding by Tbf1. Another novel complex in Fig. 4a
contains Vid30 and six other subunits (also see Fig. 3d inset). Five of
its subunits (Vid30, Vid28, Vid24, Fyv10, YMR135C) have been
genetically linked to proteasome-dependent, catabolite-induced
degradation of fructose-1,6-bisphosphatase39, suggesting that the
remaining two subunits (YDL176W, YDR255C), hypothetical pro-
teins of hitherto unknown function, are probably involved in the
same process. Vid24 was reported to be in a complex with a M r of
approximately 600,000 (ref. 39), similar to the sum of the apparent
M r values of the subunits of the Vid30-containing complex. The
third novel complex contains Rtt109 and Vps75. Because Vps75 is
related to nucleosome assembly protein Nap1, and Rtt109 is involved
in Ty transposition40, this complex may be involved in chromatin
assembly or function.

Our systematic characterization of complexes by TAP and mass
spectrometry has often led to the identification of new components
of established protein complexes (Fig. 3a)41–43. Figure 4 high-
lights Iwr1 (YDL115C), which co-purifies with RNA polymerase II
(RNAPII) along with general initiation factor TFIIF and transcrip-
tion elongation factors Spt4/Spt5 and Dst1 (TFIIS) (Figs 4b and 3d
(inset); see also Supplementary Fig. S5a). We used synthetic genetic
array (SGA) technology9 in a quantified, high-density E-MAP for-
mat10 to systematically identify synthetic genetic interactions for
iwr1D with deletions of the elongation factor gene DST1, the SWR
complex that assembles the variant histone Htz1 into chromatin44,
an Rpd3-containing histone deacetylase complex (Rpd3(L)) that
mediates promoter-specific transcriptional repression30,31, the his-
tone H3 K4 methyltransferase complex (COMPASS), the activity of
which is linked to elongation by RNAPII45, and other transcription-
related genes (Fig. 4c). Moreover, DNA microarray analyses of the
effects on gene expression of deletions of IWR1 and other genes

involved in transcription by RNAPII, followed by clustering of the
genes according to the similarity of their effects on gene expression,
revealed that deletion of IWR1 is most similar in its effects on mRNA
levels to deletion of RPB4 (Fig. 4d), a subunit of RNAPII with
multiple roles in transcription46. We also made use of the fact
that Iwr1 is highly conserved (Supplementary Fig. S5b), with a
homologue, CG10528, in Drosophila melanogaster. Fig. 4e shows
thatDrosophila Iwr1 partly co-localizes with phosphorylated, actively
transcribing RNAPII on polytene chromosomes, suggesting that Iwr1
is an evolutionarily conserved transcription factor.

Conclusions

We have described the interactome and protein complexes under-
lying most of the yeast proteome. Our results comprise 7,123
protein–protein interactions for 2,708 proteins in the core data set.
Greater coverage and accuracy were achieved compared with pre-
vious high-throughput studies of yeast protein–protein interactions
as a consequence of four aspects of our approach: first, unlike a
previous study using affinity purification and mass spectrometry14,
we avoided potential artefacts caused by protein overproduction;
second, we were able to ensure greater data consistency and repro-
ducibility by systematically tagging and purifying both interacting
partners for each protein–protein interaction; third, we enhanced
coverage and reproducibility, especially for proteins of lower abun-
dance, by using two independent methods of sample preparation and
complementary mass spectrometry procedures for protein identifi-
cation (in effect, up to four spectra were available for statistically
evaluating the validity of each PPI); and finally, we used rigorous
computational procedures to assign confidence values to our pre-
dictions. It is important to note, however, that our data represent
a ‘snapshot’ of protein–protein interactions and complexes in a
particular yeast strain subjected to particular growth conditions.

Both the quality of the mass spectrometry spectra used for protein
identification and the approximate stoichiometry of the interacting
protein partners can be evaluated by accessing our publicly available
comprehensive database (http://tap.med.utoronto.ca/) that reports
gel images, protein identifications, protein–protein interactions and
supporting mass spectrometry data (Supplementary Information
and Supplementary Fig. S6). Soon to be linked to our database will
be thousands of sites of post-translational modification tentatively
identified during our LC-MS/MS analyses (manuscript in prepa-
ration). The protein interactions and assemblies we identified pro-
vide entry points for studies on individual gene products, many of
which are evolutionarily conserved, as well as ‘systems biology’
approaches to cell physiology in yeast and other eukaryotic
organisms.

METHODS
Experimental procedures and mass spectrometry. Proteins were tagged,
purified and prepared for mass spectrometry as previously described43. Gel
images, mass spectra and confidence scores for protein identification by mass
spectrometry are found in our database (http://tap.med.utoronto.ca/). Confi-
dence scores for protein identification by LC-MS/MS were calculated as
described previously43. After processing 72 database searches for each spectrum,
a score of 1.25, corresponding to 99% confidence (A.P.T. and N.J.K, unpublished
data), was used as a cut-off for protein identification by MALDI–TOF mass
spectrometry. Synthetic genetic interactions and effects of deletion mutations
on gene expression were identified as described previously30. Drosophila
polytene chromosomes were stained with dIwr1 anti-peptide antibody and H5
monoclonal antibody as previously described47.
Identification of protein complexes.Details of the methods for identification of
protein complexes and calculating their overlaps with various data sets are
described in Supplementary Information.
Protein property analysis. We used previously published yeast protein localiza-
tion data5,6, and yeast protein properties were obtained from the SGD (http://
www.yeastgenome.org/) and GO (http://www.geneontology.org) databases.
Proteins expressed at high, medium or low levels have expression log values of
.4, 3–4, or ,3, respectively18.
Phylogenetic analysis. For each S. cerevisiae sequence a BLAST and TBLASTX
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search was performed against each of the different organism data sets, including
predicted ORFs from fully sequenced genomes, expressed sequence tag con-
sensus sequences (obtained from http://www.partigenedb.org) and some raw
genomic sequences. Using a BLAST bit score cut-off of 50, a taxonomic profile
for each ORF was obtained by identifying sequences sharing significant simi-
larity to at least one organism from each group. An ORF is said to be specific to
each group only if it has a match to an organism within that group and not to any
organism deemed to be more distantly related. Values of betweenness were
calculated using the software Pajek (http://vlado.fmf.uni-lj.si/pub/networks/
pajek/).
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