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ABSTRACT 
 
Understanding how the genome and the epigenome work together to control gene transcription             
has applications in our understanding of diseases such as human cancer. In this study, we               
combine the ability of NOMe-seq to simultaneously evaluate CpG and chromatin accessibility,            
with long-read nanopore sequencing technology, a method we call nanoNOMe. We generated            
>60Gb whole-genome nanopore sequencing data for each of four human cell lines (GM12878,             
MCF-10A, MCF-7, MDA-MB-231) including normally poorly mapped repetitive regions. Using          
the long reads, we find that we can observe phased methylation and chromatin accessibility,              
large scale pattern changes, and genetic changes such as structural variations from a single              
assay.  
 
INTRODUCTION  

Many human diseases, including all forms of neoplasia, result from aberrant gene regulation             
through mechanisms including genetic mutation, altered signal transduction, and epigenetic          
alteration. Healthy cells use tight control of the epigenome to modulate active transcription of              
genes through the coordination of numerous signals including methylation of CpG dinucleotides,            
chromatin accessibility, and nuclear organization. The epigenome is highly mutable, changing           
dynamically in response to external stimuli, which can result in epigenetic variation among             
phenotypically and genetically homogeneous populations. This feature is especially evident          
when comparing tissue-paired normal and cancer samples​1​. Normal tissue commonly has           
well-defined epigenetic signatures, in contrast to transformed cells wherein cancer epigenetics           
is much more varied from sample to sample ​1​, and even from cell to cell ​2​.  

With the proliferation of DNA sequencing technologies, methods have been developed for            
examining nuclear organization, protein binding site occupancy, chromatin accessibility, and          
methylation state. Many of these methods rely on the vulnerability of accessible chromatin to              
enzymatic treatment, e.g. DNAse-seq ​3​, ATAC-seq ​4​. One of these methods, NOMe-seq ​5​, labels           
genomic regions in a nucleosome-depleted, accessible state using an exogenous GpC           
methyltransferase. Combined with bisulfite conversion, this method permits simultaneous         
evaluation of the endogenous cytosine methylation as well as nucleosome occupancy.           
However, these methods do not directly interrogate the DNA strand, and the reads are typically               
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too short to provide information about the regional context of the DNA.  

The long reads possible with nanopore sequencing provide a deeper level of insight, allowing              
investigation of long-range patterns on individual DNA molecules. We and others have            
previously shown that endogenous CpG methylation can be accurately called with nanopore            
data ​6,7​. By extending this model to include the non-native GpC modifications, we are able to               
adapt the NOMe-seq workflow to the nanopore platform. We then take advantage of the long               
read lengths (>10kb) generated by nanopore sequencing to read the CpG methylation and             
chromatin accessibility across stretches of genomic regions at the single molecule level. Using             
this approach we have simultaneously determined phased patterns of native methylation and            
chromatin accessibility in four different human cell lines.  

RESULTS 

Nanopore GpC methylation calling 

We previously developed a software tool, nanopolish, which can measure CpG methylation from             
nanopore sequencing ​6​. Specifically, nanopolish employs a hidden Markov Model (HMM) to           
detect cytosine methylation based on electrical current signatures (events) corresponding to           
groups of nucleotide sequences(k-mers). The HMM uses a table of event level distributions             
characteristic to every k-mer, termed a pore model, to decipher the methylation state of k-mers.               
The CpG methylation pore model was generated from sequencing data of DNA enzymatically             
methylated by M.SssI at >95% of all CpG locations. The methylation caller outputs log-likelihood              
ratios for the probability of methylation at a given k-mer, and a threshold is applied to determine                 
the binary value of methylation on a single-molecule resolution. To expand the nanopolish             
algorithm to detect cytosine methylation at GpC contexts, we generated a new training set using               
combinations of M.SssI (CpG methyltransferase) and M. CviPI (GpC methyltransferase) on           
unmethylated (PCR amplified) ​Escherichia coli (E. coli) genomic DNA (see Methods). This            
resulted in samples with CpG, GpC, and both CpG and GpC methylation as well as an                
unmodified negative control. The methylation samples were sequenced on Oxford Nanopore           
Technologies(ONT) MinIONs using the sequencing library preparation kit by ligation          
(LSK-SQK109). The resulting raw data was basecalled using albacore and aligned to the ​E. coli               
reference genome. 

We extracted the current event signals and compared the distributions for a set of k-mers               
containing combinations of the methylation motifs. In k-mers that contained motifs for GpC             
methylation, we observed that the GpC methylated samples had clear shifts in event level              
distributions in comparison to unmethylated samples (​Fig. 1a​). We further observed that in             
some k-mers that contain both CpG and GpC motifs, the three methylated samples had different               
shifts in current, indicating that CpG and GpC methylation could be detected simultaneously in              
some contexts. The sequencing data from GpC methylation sample was used to train the pore               
model for GpC methylation detection.  

To benchmark GpC methylation detection, we tested methylation pore models on completely            
methylated and unmethylated samples of genomic DNA from GM12878 human lymphoblast cell            
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line. As with ​E. Coli ​samples, we generated a completely unmethylated sample of GM12878              
gDNA from whole genome PCR-amplification, then treated this with either M. SssI (CpG) or M.               
CviPI (GpC) to generate the methylated samples. The extent of methylation was validated via              
low coverage whole genome bisulfite sequencing, using ~2 Mb of sequencing data per             
condition, which confirmed that the methylated samples were methylated at >95% of all             
detected motifs (​Supplementary Table 1​). These same validated samples were used as the             
truth sets for unmethylated, CpG methylated, and GpC methylated events. To assess the             
performance of methylation detection, we generated receiver operating characteristic (ROC)          
curves by applying a range of thresholds to bin methylation statuses (​Fig. 1b​) as we did                
previously​6​. Using a log-likelihood ratio of 2.5 as the threshold for calling methylation (where a               
value <-2.5 is unmethylated, >2.5 is methylated, and (-2.5, 2.5) is not called), we called 96% of                 
CpGs as methylated in the 72% of all possible CpG k-mers and 96% of GpCs as methylated in                  
84% of all possible GpC k-mers.(​Supplementary Fig. 1a​). Both the CpG and GpC models had               
high area under the curve (AUC) of the ROC curve, confirming the applicability of the models. It                 
should again be emphasized that the bisulfite sequencing data indicated incomplete (~96-98%)            
enzymatic methylation in this sample, so this is a conservative estimate of our accuracy. We               
used this threshold of 2.5 for subsequent methylation detection.  

Chromatin and DNA methylation profiling with NanoNOMe 

We then adapted the existing NOMe-seq protocol ​5 to profile chromatin state for use with              
nanopore sequencing, terming this modified method nanoNOMe ​(Fig. 2a) ​. Because nanopore           
sequencing discriminates methylated cytosines directly, bisulfite conversion and PCR         
amplification are unnecessary. However, to preserve the modifications, we cannot amplify the            
DNA requiring a higher (1-2ug) initial amount of DNA as input. Briefly, intact nuclei were               
extracted from cells by gentle lysis, followed by methylation with GpC methyltransferase. The             
methylation treatment of intact nuclei results in GpC methylation only at unoccupied, open             
regions of the genome (​Fig. 2a​). After purification of DNA from these nuclei by              
phenol:chloroform extraction and ethanol precipitation, we performed ligation-based library         
preparation for nanopore sequencing (ONT). After sequencing, basecalling, and alignment, we           
applied our GpC methylation model to detect GpC methylation in addition to detecting CpG              
methylation using the existing model. Subsequently, methylation at cytosines in a GCH context             
were used as a measure of chromatin accessibility and cytosines in a HCG context were used                
as measures of endogenous methylation, and methylation measurements in GCG cytosines           
were excluded from analysis. In describing GpCs state, a methylated GpC was interpreted as              
an accessible mark, and unmethylated as inaccessible. 

We performed nanoNOMe on the GM12878 lymphoblast cell line, chosen because it has been              
well-characterized in previous studies​8,9​. We generated 133 Gb of mapped sequencing data            
from 13 flowcells (12 minION and 1 PromethION), with an N50 read length of 10,743 bp. (​Table                 
1​). We first compared genomic coverage of the resulting nanoNOMe data to whole genome              
bisulfite sequencing (WGBS) from a previous study (ENCODE accession ENCSR890UQO).          
We assessed the ability of nanoNOMe to cover poorly mappable regions by focusing on regions               
that were enriched in WGBS reads with low mapping score (10 or more reads with mapping                
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quality < 5). These regions covered 132 Mb of the human genome, comprising of 57,982 distinct                
regions with average size of 2.3 kb. The average coverage of high mapping quality nanoNOMe               
reads (mapping quality>20) in these regions was 21x, confirming that long read sequencing,             
and specifically nanoNOMe, is able to cover these regions of low mappability. As an example,               
we plotted nanoNOMe and WGBS sequencing data in the region surrounding a SINE element,              
MIRb in chr11:117,135,800-117,136,300 (​Fig. 2b​). We observed that the long reads generated            
from nanopore sequencing provide more even coverage across the region and stretch through             
the repetitive element, allowing us to measure methylation in and around the entire repetitive              
element. 

We next assessed the performance of nanoNOMe in resolving nucleosome occupancy around            
CTCF binding sites as done by Kelly, et. al.​5​. We used CTCF binding sites determined by                
conserved CTCF-binding motifs​10 that were >2kb away from transcription start sites and            
experimentally shown to be bound by CTCF in GM12878 ​9​. We generated aggregate plots of              
methylation and chromatin accessibility relative to these CTCF binding sites (​Fig. 2c​). The             
methylation and DNA accessibility agreed with gold standard methods (WGBS and MNase-seq,            
respectively) from previous studies (​Fig. 2c, ​ENCODE accession ENCSR890UQO and          
ENCSR000CXP) . Specifically, we observed that both chromatin accessibility and methylation           
demonstrate an oscillation in aggregate methylation, propagating from the center of the CTCF             
binding sites. The distance between the peaks was ~180 bp, corresponding to the typical              
spacing of mononucleosomes and linker DNA observed near CTCF sites. 

NanoNOMe reveals allele-specific patterns of methylation and nucleosome positioning 

We next explored the applicability of long-reads generated from nanoNOMe in detecting            
patterns of the epigenetic features. Using the bisulfite mode on IGV, we can view methylation               
over the length of long reads at single-read resolution (​Fig. 3a​). Because nanopore sequencing              
has no amplification, the heterogeneity in the epigenome is directly translated to the single-read              
data, making it difficult to observe patterns of epigenetic features. This is especially true with               
DNA accessibility, as the dynamic nature of chromatin leads to increased intercellular signal             
variability ​11​. The biological heterogeneity of DNA accessibility is further compounded by errors             
associated with the enzymatic methylation, such as imperfect methylation efficacy, non-specific           
methylation, and dissociation of nucleosomes in a small fraction of DNA during lysis. In order to                
resolve patterns of methylation and DNA accessibility on single-read resolution, we have to             
remove the heterogeneity and noise. To that end, we focused on the enrichment in              
co-occurrences of methylated or unmethylated cytosine on each read, where the co-occurrence            
is defined by same type of event (methylated or unmethylated) being observed at two distinct               
positions on a given read (​see Methods​). Consolidating the co-occurrence across reads in a              
given region, we found that patterns of read-level nucleosome positioning across the length of              
reads can be resolved using a co-occurrence matrix (​Fig. 3b​). Because this analysis measures              
the relationship of (un)methylated cytosine between positions on individual reads, the peaks in             
the heatmap highlight locations of nucleosome positioning and distances between them,           
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whereas the average plot only indicates that nucleosomes were present at the troughs without              
any relationship to other troughs along the region.  

We then used the ability of nanopore sequencing to phase reads into haplotypes​12 to compare               
the patterns of chromatin accessibility and methylation between maternal and paternal reads            
(​Fig. 3c ​). Because nanopore sequencing generates long reads, each read has a greater chance              
of encountering a heterozygous SNP which can be used to phase the reads into maternal or                
paternal origin. As an example, we examined the promoter for PEG10 (Paternally expressed             
gene 10), which is known to be expressed only from the paternal allele ​13​. At the PEG10                
promoter, we noted a defined region that largely is unmethylated in the paternal allele while               
being heavily methylated in the maternal allele. We also observe allele specific chromatin             
accessibility in the promoter-proximal gene body of PEG10, with the paternal allele showing a              
region of consistently accessible while the maternal allele remains inaccessible (​Fig. 3c​). We             
used the HOMER (Hypergeometric Optimization of Motif EnRichment) suite of tools​14 to            
examine this region of differential accessibility, and revealing that this region is dense in              
zinc-finger binding motifs, notably the Zn-finger transcription factors KLF5 and KLF14. Members            
of the KLF family are known to exert both activating and inhibitory activity through chromatin               
remodeling and recruitment of co-activator or co-repressors​15​, and therefore this region of            
increased accessibility on the paternal allele may highlight a regulatory element for this             
imprinted gene PEG10. Interestingly, both of these observations for PEG10 had been predicted             
by Fang et al ​16​, using computational methods to mine short-read bisulfite sequencing data.              
Their analysis suggested allele specific methylation at the promoter for PEG10 as well as the               
presence of intragenic regulatory elements on this gene.  

Epigenome and Gene Expression 

We also explored the relationship between epigenetic states and gene expression. Upon            
generating the metaplots with respect to distance to TSS of annotated genes and stratifying the               
measurements based on GM12878 gene expression quartiles (ENCODE accession         
ENCSR843RJV), we observed that chromatin and DNA methylation show shifts in signal            
depending on expression, where endogenous methylation decreases at promoter regions with           
increasing expression and accessibility increases with increasing expression (​Supplementary         
Fig. 2a ​). To observe the epigenetic states for each gene and measure how the two features are                 
directly related with respect to gene promoters, we calculated the average endogenous            
methylation and accessibility in individual promoter regions (400 bp window around transcription            
start sites) (​Fig. 4a ​). We observed that promoters of genes with low expression tend to be highly                 
methylated with low accessibility, and with increasing expression, the cluster shifted first to             
lower methylation and low accessibility, then to low methylation and higher accessibility. These             
results suggest that a combination of accessibility and methylation may be more useful to              
understand gene regulation than either independently.  

Next, we explored the applicability of nanoNOMe on differential epigenetics analysis by            
performing nanoNOMe on three well-characterized breast cell lines: MCF-7 (luminal breast           
carcinoma, ER+/PR+/HER2-) and MDA-MB-231 (basal breast carcinoma, ER-/PR-/HER2-) as         
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two subtypes of breast cancer, and MCF-10A (fibrocystic disease) as the normal baseline             
subtype (​Table 1​)​17,18​. We achieved ~20x whole genome coverage of nanoNOMe data per cell              
line. Comparison of epigenetic states on promoter regions of differentially expressed genes            
revealed that a decrease in endogenous methylation coupled with an increase in accessibility is              
reflective of an increase in transcription; while an increase in methylation coupled with a              
decrease in accessibility is correlated with a decrease in transcription (​Supplemenatry Fig. 3​).             
In all three comparisons, higher methylation and lower accessibility favors decrease in            
expression (under-expression), and lower methylation and higher accessibility favors increase in           
expression (over-expression).  

We then examined SLC16A1, one of the genes down-regulated in the cancer cell lines, that also                
exhibited differential methylation and chromatin state(​Fig 4b,c​). The methylation frequency          
confirms that the promoter region of SLC16A1 is largely unmethylated in MCF-10A and             
methylated in MCF-7 and MDA-MB-231. The single-read data accurately captures the           
cell-to-cell variability in methylation, where a few of the reads in MCF-10A exhibit methylation              
across the entire promoter region even when the vast majority of reads are unmethylated. We               
can clearly observe the slow erosion of the 3kb unmethylated region from the normal (MCF10A)               
to the cancer (MCF-7) to the aggressive cancer (MDA-MB-231) cell line, all on individual reads.               
Turning to chromatin accessibility, MCF-10A had a relatively wide region of accessible            
chromatin around the TSS whereas MCF-7 had a narrow window and MDA-MB-231 is             
completely inaccessible. Furthermore, the read-level co-occurrence revealed that MCF-7 had a           
strong frequency of co-occurrence of inaccessibility -1000 bp upstream and downstream of the             
TSS, suggesting blocking of transcription by occupancy up and downstream of the TSS, such              
as chromatin looping, whereas in MDA-MB-231, the down-regulation occurred by total           
occupancy of the TSS (​Fig. 4d ​) 

Structural Variations and the Epigenome 

We also detected structural variations and compared nanoNOMe patterns at these sites across             
the three breast cell lines(​Supplementary Table 2​)​19,20​. We called a total of 25,882 SVs across               
all three breast lines and compared these using SURVIVOR​20​. The most abundant variant type              
were deletions (13,974) followed by insertions (10,127). The majority of the SVs were             
singletons (53.8%) with 28.3% overlapping over two samples and 17.8% all three samples. The              
majority of genes (67.36%) impacted by SVs were from deletions.  

Selecting just SVs that occur only in the cancer cell lines (MCF-7 and MDA-MB-231) but not in                 
the normal breast cell line (MCF-10A), we examined the epigenetic state of the regions flanking               
breakpoints. We found that regions flanking the breakpoints of structural variations do not             
exhibit consistent epigenetic characteristics in these cell lines, suggesting that structural           
variations have complex epigenetic consequences, dependent on more factors than the type of             
the variant (​Supplementary Fig. 3​). For example, in a 4,500 bp homozygous deletion in chr19               
of MCF-7 both flanking regions are hypermethylated as compared to the normal cell lines (​Fig.               
5a​). The read-level co-occurrence showed that the regions around the deletion are less             
frequently coordinated in occupancy but instead oscillate in the occupancy, shown by the             
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oscillation of red - high occupancy - to blue - low-occupancy, indicating protection of the deletion                
by positioning of nucleosomes around the breakpoints (​Fig. 5b​).  

DISCUSSION 

We have demonstrated a method to examine endogenous methylation and chromatin           
accessibility on long fragments of DNA. Leveraging long reads we can measure allele specific              
methylation and chromatin profiles. We have also shown that because nanopore sequencing            
reads span multiple nucleosomes, nucleosome occupancy on single reads can be observed and             
the frequency of nucleosome positioning can be determined to observe consistency and            
patterns of nucleosome positioning. Using existing expression data for GM12878, we evaluated            
how chromosome accessibility and cytosine methylation were related to gene transcription. We            
found that these features were able to explain part of the differences in gene transcription, with                
the overall trend of the most highly expressed genes demonstrated the most accessible             
promoters with the lowest amount of CpG methylation. Extending our studies into breast cell              
lines, we compared the epigenetic state of the promoters of differentially expressed genes and              
found that focusing on read-level data allowed us to discern patterns of nucleosome occupancy.              
Further, we can observe epigenetic states of alleles with structural variants, allowing combined             
measurement of large genetic mutation and epigenetic state with the same assay. 

However, this method is still limited, in part by using the same methylation mark that already                
exists in mammalian cells, 5-methylcytosine. Moving forward, we can take advantage of other             
methyltransferases, e.g. EcoGII which methylates adenine to N6-methyladenine. Such a          
technique could also provide a “multi-color” measurement, allowing further aspects of the            
epigenome to be integrated on the same molecule. Others have already leveraged this             
methyltransferase fused to lamin protein ​21​, to explore nuclear architecture. but are limited to IP              
based sequencing, precluding single molecule resolution. With further training and          
development, we may be able to leverage exogenous labeling with nanopore sequencing to             
store information about the cell state on the DNA, then sequencing it to gain long-range, phased                
information. 

METHODS 
 
GpC methylation model generation for nanopolish 

Along with the GpC methylation model, the CpG methylation model was also regenerated to              
ensure the validity of the method for model generation. Genomic DNA from ​E. coli ​K12 MG1655                
(ATCC 700926DQ) and genomic DNA from GM12878 lymphoblast cell line (Coriell Institute)            
were first sheared to an average fragment size of 8 kb using g-tubes (Covaris Cat. ​520079 ​). The                 
fragmented DNA was PCR amplified to generate unmethylated DNA using the first steps of low               
input ligation kit SQK-LWP001 (ONT). Briefly, samples were end-repaired,         
deoxyadenosine(dA)-tailed, and ligated to amplification adaptors, followed by 11 cycles of PCR            
amplification. The resulting unmethylated, sheared DNA was methylated with M. SssI (NEB Cat.             
M0226) for CpG methylation or M. CviPI (NEB Cat. M0227) for GpC methylation, or both               
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enzymes for CpG+GpC methylation. Two cycles of 4-hour methylation were performed for each             
sample, and for each cycle of treatment S-adenosylmethionine (SAM) and the enzyme were             
replenished at the 2 hour mark to maximize methylation levels.  

Validation of DNA methylation by bisulfite sequencing 

Near-complete methylation in the training samples (​E. coli​) and testing samples (GM12878)            
were validated by performing whole genome bisulfite sequencing on the Illumina MiSeq            
platform. NEBnext Ultra library preparation kit (NEB Cat. E7370) and Zymo EZ DNA             
methylation-lightning kit (Zymo Cat. D5030) were used to generate the bisulfite sequencing            
libraries. Briefly, DNA from each sample was shared to 300 bp fragments using Bioruptor Pico               
(Diagenode), followed by end-repair and dA-tailing. Methylated universal adaptor (NEB Cat.           
E7535) was ligated using the Blunt/TA ligase from the kit. The adaptor-ligated samples were              
bisulfite-converted, quenched, and cleaned-up before PCR amplification with multiplexing         
primers and uracil-tolerant Taq polymerase (KAPA HiFi Uracil+ (Roche Cat. KK2801)). The            
resulting DNA sequencing library was sequenced on an Illumina MiSeq device using a V2              
300-cycle chemistry.  

The resulting data was analyzed using Bismark version 0.19.0 ​22​. After alignment, PCR            
duplicates were removed using Picard tools MarkDuplicates module        
(​http://broadinstitute.github.io/picard/​). Reads were truncated at the 3’ end to a max length of 50              
bp to minimize any methylation bias at 3’ ends of reads associated with the low complexity                
bisulfite converted libraries. The total number of methylated cytosine residues and unmethylated            
cytosine residues were counted to calculate methylation percentages of the samples. 

Cell culture 

GM12878 lymphoblast cells were obtained from Coriell Institute and MCF-10A, MCF-7, and            
MDA-MB-231 breast cells were obtained from ATCC. GM12878 were grown in RPMI 1640             
medium (Gibco Cat. 11875119) supplemented with 15% fetal bovine serum (FBS, Gibco Cat.             
26140079) and 1% penicillin streptomycin (P/S, Gibco Cat. 15140122). MCF-10A were grown in             
in DMEM F-12 medium (Gibco Cat. 11320033) supplemented with 5% horse serum (Gibco Cat.              
16050122), 10 μg/mL human insulin (Sigma Aldrich Cat. 19278), 20 ng/mL hEGF (Gibco Cat.              
PHG0311L), 100 ng/mL Cholera toxin (Sigma Aldrich Cat. C8052), 0.5 μg/mL Hydrocortisone            
(Sigma Aldrich Cat. H0135), and 1% P/S. MCF-7 and MDA-MB-231 were grown in DMEM              
(Gibco Cat. 11965118) supplemented with 10% FBS and 1% P/S. 

Nucleosome footprinting via GpC methyltransferase 

NOMe-seq was performed to the cells with adjustments for nanopore sequencing. Cells were             
collected by trypsinization, then nuclei were extracted by incubating in resuspension buffer (100             
mM Tris-Cl, pH 7.4, 100 mM NaCl, 30 mM MgCl ​2​) with 0.25 % NP-40 for 5 minutes on ice. Intact                    
nuclei were collected by centrifugation for 5 minutes at 500xg at 4 °C. Nuclei were subjected to                 
a methylation labeling reaction using a solution of of 1x M. CviPI Reaction Buffer (NEB), 300                
mM sucrose, 96 μM S-adenosylmethionine (SAM; New England Biolabs, NEB), and 200 U M.              
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CviPI (NEB) in 500 μL volume per 500,000 nuclei. The reaction mixture was incubated in 37 °C                 
with shaking on thermomixer at 1,000 rpm for 15 minutes. SAM was replenished at 96 μM at 7.5                  
minutes into the reaction. The reaction was stopped by addition of equal volume of stop solution                
(20 mM Tris-Cl, pH 7.9, 600 mM NaCl, 1% SDS, 10 mM disodium EDTA). Samples were treated                 
with proteinase K (NEB) at 55 °C for > 2 hours, and DNA was extracted via pheol:chloroform                 
extraction and ethanol precipitation. After proteinase K treatment, and in all following steps,             
samples were handled with care using large orifice pipette tips to avoid excessive fragmentation              
of DNA. 

Nanopore sequencing 

Purified gDNA was prepared for nanopore sequencing following the protocol in the genomic             
sequencing by ligation kit LSK-SQK108 (ONT). Samples were first sheared to ~10 kb using              
G-tubes (Covaris): by centrifuging 2-3 μg of unfragmented gDNA at 5,000x g for 1 minute, then                
inverting the tube and centrifuging again. We sheared the DNA to 10 kb because it produces                
long fragments of DNA while maximizing the yield of nanopore sequencing. Shearing to larger              
sizes or unsheared DNA may be used to maximize the length of sequenced reads, with the                
caveat that sequencing yield will drop. The sheared samples were end-repaired and dA-tailed             
using NEBnext Ultra II end-repair module (NEB), followed by clean-up using 1x v/v AMPure XP               
beads (Beckman Coulter). Sequencing adaptors, comprised of leader adaptor DNA and motor            
proteins, were ligated to the end-prepared DNA fragments using Blunt/TA Ligase Master Mix             
(NEB), followed by clean-up using 0.4x v/v AMPure XP beads and sequencing kit reagents.              
>400 ng of adaptor ligated samples per flow cell were loaded onto FLO-MIN106 or PRO-002               
flowcells and run o n MinION Mk1b, GridION, or PromethION sequencers for up to 72 hours. 

Data preprocessing (basecalling, alignment, and methylation calling) 

Raw current signals were converted to DNA sequences using albacore version 2.1.3 (ONT),             
using basecalling configuration designed to reduce false-positive deletions in the resulting           
sequences ​23​. DNA sequences were aligned to hg38 human reference genome without            
alternative contigs using NGM-LR​19​. CpG and GpC methylation were called using nanopolish            
with a slight adjustment to allow GpC methylation calling, using a log-likelihood threshold of 2.5               
to determine methylation states. We used Sniffles​19 with default parameters to infer SVs across              
each sample and SURVIVOR​20​ merge to obtain a multi sample VCF file. 

Comparison of nanoNOMe with conventional methodologies 

Bisulfite sequencing data of GM12878 was obtained from ENCSR890UQO, and was processed            
using Bismark version 0.19.0. After alignment to hg38 reference genome, duplicate reads were             
removed using Picard tools MarkDuplicates module (​http://broadinstitute.github.io/picard/​)       
before further bismark processing to yield methylation frequency values. Normalized MNase-seq           
signals were obtained from ENCSR000CXP. Methylation frequency and normalized MNase-seq          
signal at regions surrounding genomic features of interest were extracted for the generation of              
the aggregate plots. For each genomic feature, average methylation frequency and accessibility            
was calculated by aggregating methylation calls with respect to distance from the feature and              
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taking the rolling average with a window of 50 bp. Known TSS and CGI were obtained from                 
Gencode (release v29). CTCF binding sites were determined by overlapping computationally           
predicted CTCF binding sites​10 with conservative IDR peaks in ChIP-seq of CTCF on GM12878              
(ENCODE accession ENCSR000AKB) and removing peaks that fell within 2kb of known TSS. 

Read-level methylation visualization 

The bisulfite view setting of IGV was used to visually compare methylation states between              
samples. In order for this software to function properly, we converted all non-methylated             
cytosines to thymines (as would occur during bisulfite conversion). All cytosines that nanopolish             
called as methylated (in either CpG or GpC context) were kept as cytosines. This permitted               
inspection of endogenous methylation as well as chromatin accessibility using IGV.  

To observe patterns of DNA methylation and accessibility in the presence of biological             
heterogeneity and methodological variability, co-occurrence of methylated/unmethylated       
cytosine is calculated across reads that map to the genomic region of interest. Co-occurrence,              
c, is defined by the same event,M, occurring on two separate binned locations, i and j, along a                  
given read : 

 

After calculating the co-occurrence for each pair of coordinates for each read, the counts are               
piled up to determine the frequency of co-occurrence as a measure of how often reads have the                 
same events occurring between the positions i and j. Subsequently generated matrix of             
co-occurrence pileup is normalized by the maximum count, and plotted as a 2-dimensional             
heatmap to visualize the patterns (see accessions for code availability). 

Haplotype Assignment and Allele-Specific Methylation Analysis 

We obtained genotype information for GM12878 from existing phased Illumina platinum genome            
data generated by deep sequencing of the cell donors’ familial trio ​24​. The bcftools package was               
used to filter for only variants that are heterozygous in GM12878. We then used the SnpEff​25                
variant annotation and effect prediction tool was used to associate gene names to each read.               
Starting with aligned reads, we used the extractHAIRS utility of the haplotype-sensitive            
assembler HapCUT2 ​26 to identify reads with allele-informative variants. For allelic assignment,           
we required a read to contain at least two variants, and required that greater than 75% of                 
identified variants agreed on the parental allele of origin -- this stringent threshold was selected               
to reduce the chances of incorrect assignment from nanopore sequencing errors. Through this             
approach each read was annotated as maternal, paternal or unassigned.  

Accessions 
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NanoNOMe data of GM12878, MCF-10A, MCF-7, and MDA-MB-231 are available at NCBI 
Bioproject ID ​PRJNA510783 (​http://www.ncbi.nlm.nih.gov/bioproject/510783 ​). Source code is 
available at ​https://github.com/timplab/nanoNOMe ​. A forked repository of nanopolish was used 
to call GpC methylation (​https://github.com/isaclee/nanopolish ​).  
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Figures  
 

 
Figure 1. Nanopore sequencing accurately detects GpC methylation. ​(a) Event level current            
density distribution for select k-mers having CpG, GpC, and both CpG and GpC motif for ​E. Coli                 
genomic DNA with no methylation, CpG, GpC, and both CpG and GpC methylation. ​(b) ROC               
curve for a range of thresholds for methylation detection on control samples (GM12878             
genomic DNA modified with CpG and GpC methylation). 
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Figure 2. NanoNOMe can measure endogenous DNA methylation and accessibility. ​(​a​)           
nanoNOMe uses exogenous methylation of accessible DNA by GpC methyltransferase,          
followed by nanopore sequencing and nanopolish methylation detection. (​b​) Using bisulfite           
mode of IGV to visualize methylation on nanopore sequencing reads versus bisulfite            
sequencing. Note gaps in coverage in highly repetitive region. (​c​) Aggregate plots of             
endogenous methylation (left) and chromatin accessibility (right) from nanoNOMe (red) and           
conventional assays (BS-seq and MNase-seq, blue) centered around CTCF binding sites. 
 
 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/504993doi: bioRxiv preprint first posted online Dec. 22, 2018; 

http://dx.doi.org/10.1101/504993
http://creativecommons.org/licenses/by/4.0/


 
Figure 3. Long single read chromatin and methylation patterns. ​(​a​) GpC methylation            
(accessibility) of a CTCF binding site, both individual reads (top) and average frequency             
(bottom) (​b​) Co-occurrence of accessibility and inaccessibility (GpC) across the lengths of single             
reads and consolidating co-occurrences across all reads in the region resolves patterns such as              
nucleosome occupancy. (​c​) Reads mapped to the ​PEG10 ​gene region were separated based             
on alleles, showing that the reads from paternal, expressed, allele are unmethylated (CpG) at              
the promoter and open (GpC) in the gene body. 
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Figure 4. Epigenetic state correlation with gene expression ​(​a​) Scatter plots of endogenous             
methylation versus accessibility color-coded by expression quartile in GM12878. Each dot in the             
scatter plot represents the methylation and chromatin state of a promoter region of a gene (200                
bp +/- TSS) (​c​) IGV view of endogenous methylation surrounding ​SLC16A1 shows the             
differential methylation around the promoter region of the gene and (​d​) co-occurrence plot of              
accessibility and inaccessibility showing increased co-occurrence of chromatin inaccessibility         
around the promoter.  
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Figure 5. Epigenetic state comparison of homozygous deletion present only in MCF-7. ​(​a​)             
(​a​) A deletion in IGV view shows that the flanking regions around the deletion in MCF-7 are                 
hypermethylated compared to MCF-10A, and (​b​) co-occurrence matrix of inaccessible events           
indicates MCF-7 has less consistent inaccessibility (more blue) and more nucleosome           
occupancy around the breakpoints (oscillation in color). 
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Tables  
 

 
Table 1. Sequencing statistics of nanoNOMe data. ​NanoNOMe was performed on four cell             
lines using multiple runs of MinION, GridION, or PromethION sequencing and pooled to             
generate one data set per cell line.  
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