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Comparative gene expression profiling
between optic nerve and spinal cord injury
in Xenopus laevis reveals a core set of
genes inherent in successful regeneration
of vertebrate central nervous system axons
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Abstract

Background: The South African claw-toed frog, Xenopus laevis, is uniquely suited for studying differences between
regenerative and non-regenerative responses to CNS injury within the same organism, because some CNS neurons
(e.g., retinal ganglion cells after optic nerve crush (ONC)) regenerate axons throughout life, whereas others (e.g.,
hindbrain neurons after spinal cord injury (SCI)) lose this capacity as tadpoles metamorphose into frogs. Tissues
from these CNS regions (frog ONC eye, tadpole SCI hindbrain, frog SCI hindbrain) were used in a three-way RNA-
seq study of axotomized CNS axons to identify potential core gene expression programs for successful CNS axon
regeneration.

Results: Despite tissue-specific changes in expression dominating the injury responses of each tissue, injury-
induced changes in gene expression were nonetheless shared between the two axon-regenerative CNS regions
that were not shared with the non-regenerative region. These included similar temporal patterns of gene
expression and over 300 injury-responsive genes. Many of these genes and their associated cellular functions had
previously been associated with injury responses of multiple tissues, both neural and non-neural, from different
species, thereby demonstrating deep phylogenetically conserved commonalities between successful CNS axon
regeneration and tissue regeneration in general. Further analyses implicated the KEGG adipocytokine signaling
pathway, which links leptin with metabolic and gene regulatory pathways, and a novel gene regulatory network
with genes regulating chromatin accessibility at its core, as important hubs in the larger network of injury response
genes involved in successful CNS axon regeneration.
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(Continued from previous page)

Conclusions: This study identifies deep, phylogenetically conserved commonalities between CNS axon
regeneration and other examples of successful tissue regeneration and provides new targets for studying the
molecular underpinnings of successful CNS axon regeneration, as well as a guide for distinguishing pro-
regenerative injury-induced changes in gene expression from detrimental ones in mammals.

Keywords: Xenopus laevis, Spinal cord injury, Optic nerve injury, Axon regeneration, Central nervous system, RNA-
seq

Background
The capacity for regeneration is an ancient characteristic
of metazoa. Although many invertebrates can reconsti-
tute an entire body from residual tissue fragments [7,
60], vertebrates regenerate only tissues and organs. This
capacity becomes more restricted both phylogenetically
in the progression from anamniote to amniote and de-
velopmentally during the transition from embryo to
adult (Fig. 1a). For example, most vertebrates are able to
regenerate peripheral nervous system (PNS) axons
throughout life and central nervous system (CNS) axons
as embryos, but only anamniotes can also regenerate
CNS axons as adults. Anuran amphibians, such as the
frog Xenopus laevis, occupy a transition point in this
progression [105]. Like other anamniotes, Xenopus re-
generates optic axons sufficiently to restore vision
throughout life [12, 39, 135], but like amniotes, it loses
its capacity to functionally regenerate spinal cord axons
developmentally, because of the surge of thyroid hor-
mone that drives metamorphosis in frogs [42] and late
fetal development in mammals [8]. Thus, Xenopus offers
a unique opportunity for exploring within the same or-
ganism why some regions of the CNS lose their ability
to regenerate axons in development, whereas others re-
tain it. In this study, we exploited these features of Xen-
opus in a novel three-way comparison of RNA-seq data
from two regions of the CNS that regenerate axons, one
throughout life (juvenile frog eye after optic nerve crush
(ONC) [39, 127, 135]) and one that does so only transi-
ently, before and after this transition (tadpole vs. juvenile
frog hindbrain after spinal cord injury (SCI) [11, 43]), to
identify potential core features that distinguish CNS
axon-regenerative responses from failed ones.
With the exception of an mRNA-seq study in lamprey,

which demonstrated that the response of brain and
spinal cord to SCI indeed differ [48], previous genome-
wide expression studies on spinal cord regeneration have
focused on either the spinal cord itself, with the lesion at
the epicenter (Xenopus laevis tadpole and frog [70], tur-
tle [142], zebrafish [50]), or on a regenerating tail (e.g.,
salamander [87], Xenopus tropicalis tadpole [21, 55, 80,
102]). Such regeneration involves not only axon regener-
ation, but also considerable wound repair and tissue

restoration. Xenopus laevis hindbrain, which is the prin-
cipal source of descending axons that project from brain
to spinal cord [43, 143], provides an opportunity to
compare transcriptional responses to SCI between axon-
regenerative and non-regenerative states of CNS
neurons and their support cells, separately from the
lesion site and its attendant wound repair and tissue res-
toration. Moreover, hindbrain neurons that regenerate
descending axons after SCI (i.e., reticular and raphe nu-
clei) in the tadpole are the very same cells that fail to do
so in the frog [43]. The Xenopus eye after ONC provides
a similar opportunity to study an injury response, separ-
ately from the injury site (Fig. 1d), but after metamor-
phosis. To date, genome wide studies in the regenerating
Xenopus visual system have been limited to SDS PAGE
[126, 128] and TRAP (RNA-Seq after Translating Ribo-
some Affinity Purification of mRNAs) studies [151].
Thus, both systems would benefit from baseline RNA-
Seq studies of their responses to axotomy.
In performing such an RNA-Seq study, we found that

the injury responses of the two regenerative tissues (frog
eye after ONC and tadpole hindbrain after SCI) shared
features in common with each other not seen in the
non-regenerative tissue (frog hindbrain after SCI).
Injury-induced genes uniquely shared between the two
regenerative tissues included many previously implicated
in promoting cell survival and regeneration of neural
and non-neural tissues alike, and revealed cellular and
physiological processes potentially at the core of a suc-
cessful regenerative response to CNS injury. We offer
these results and the insights gained from their analyses
as a resource to stimulate new avenues of investigation
into the molecular underpinnings of successful recovery
from CNS traumatic injury.

Results
Experimental design – animal procedures, sample and
data collection, and Bioinformatic analyses
Studies documenting regeneration of CNS axons with
return of function after ONC in frogs and the transient
nature of functional recovery from SCI injury in tadpoles
go back decades [36, 125]. Although initially done in
other species, subsequent studies extended these
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Fig. 1 (See legend on next page.)

Belrose et al. BMC Genomics          (2020) 21:540 Page 3 of 27



findings to Xenopus laevis [11, 39]. Electrophysiological
[40, 128], anatomical [33, 128, 152, 160], and ultrastruc-
tural [98] studies of X. laevis frog optic axon regener-
ation, as well as behavioral and anatomical studies of
tadpole SCI [11, 42, 43], both established the time
course of recovery and demonstrated true regeneration
of cut axons from surviving neurons, laying the founda-
tion for much subsequent work (e.g., reviewed in [68, 69,
127]). From these studies, three time points can be
gleaned for making appropriate comparisons between
the two systems (Fig. 1c): 1) an early phase of recovery
at three days, when histological studies observed regen-
erating axons in both systems first penetrate the lesion
[11, 160]; 2) the peak phase of regenerative axon out-
growth at seven days for SCI and eleven days for ONC,
when the density of regenerating hindbrain axons cross-
ing the lesion nears its peak [11, 42], and when regener-
ating optic axons fill the optic tract but have not yet
arrived at their targets in the tectum [160], respectively;
3) a late recovery phase at three weeks, when regenerat-
ing optic axons cover the tectum, but have not yet fully
restored a retinotopic map [128, 160], and behavioral re-
covery is largely but not yet complete in SCI [11, 42].
These same time points were used for the non-
regenerative juvenile frog SCI to obtain data on kinetic
differences.

In planning the workflow for this study (Fig. 1d), we
used the entire tissue encompassing the axotomized
neurons, because the cells responding to CNS injuries
also included interneurons [2], glia [84], macrophages
and other myeloid cells [45, 152], as well as the axoto-
mized neurons themselves. Analyzing complex tissues
requires efforts to reduce technical variation as much as
possible. By using animals of the same strain and from
the same supplier, preparing RNA and cDNA libraries in
parallel, and then mixing and sequencing all samples to-
gether on the same flow cells, we sought to minimize
technical variability, which is otherwise inherent in post
hoc comparisons derived from separate studies. To bal-
ance budgetary tradeoffs between read depth and the
statistical power gained from multiple biological repli-
cates, we sequenced at a nominal depth of 30 million
reads per sample, each of which was derived from either
five pooled hindbrains or six pooled eyes from co-reared
animals, with three such pooled biological replicates for
each condition at each time point [25]. This yielded 51
samples representing 17 conditions (Fig. 1e, F3). Because
SCI tadpoles were still developing, the unoperated con-
trols for each time point were age-matched and co-
reared. For juvenile frog SCI hindbrain, a single control
group sufficed for all three time points. For ONC, the
left, contralateral unoperated eye served as controls for

(See figure on previous page.)
Fig. 1 Using Xenopus laevis to discover prospective core genetic programs for functional recovery from central nervous system (CNS) injury. a
Xenopus laevis occupies a transition point in the phylogenetic decline (green to red) of functional recovery after CNS injury in vertebrates. Like
other anurans (yellow), X. laevis regenerates optic axons to restore vision throughout life, but only successfully regenerates spinal cord axons as
tadpoles. b A three-tissue comparison was designed to parse out core sets of genes most closely associated with successful CNS axon
regeneration. Injury-induced gene expression profiles (RNA-seq) were compared between two regenerative tissues [stage 53 tadpole hindbrain
after spinal cord transection (SCI) and 1–3 month, post-metamorphic, juvenile frog eye after optic nerve crush (ONC)] and a non-regenerative
tissue [1–3 month, post-metamorphic, juvenile frog hindbrain after SCI] to find injury-induced genes that were uniquely shared between the
regenerative CNS tissues but not with the non-regenerative one. c Previous histological, electrophysiological, and behavioral studies in X. laevis
were consulted to select three time points after optic nerve crush (ONC) and spinal cord transection (SCI) for making suitable comparisons
among the tissues - an early trauma phase, when damaged axons first begin to cross the lesion site (3 days), a peak period of maximal
regenerative axon outgrowth (7 days for SCI & 11 days for ONC), and a late period, after regenerative axon regrowth is largely completed, but
synaptic refinement and behavioral recovery continues (3 weeks) [11, 33, 40, 42, 43, 98, 126, 128, 152, 160]. d Scale drawing of the CNS
superimposed on the outline of a juvenile frog, to illustrate the injury sites and harvested tissues (ONC and SCI surgeries were done in separate
animals; the tadpole is not illustrated, but its hindbrain and spinal cord transection site were similar in location to those of juvenile frog). For
tadpole SCI, hindbrains were harvested from operated animals and age-matched unoperated controls (5 pooled hindbrains per biological
replicate, with 3 paired injury and control replicates per time point). For juvenile frog SCI, the same unoperated controls were used for all three
SCI time points (5 animals pooled into each of 3 biological replicates). For ONC, both eyes of juvenile frogs receiving an orbital nerve crush on
the right side were harvested; the right eye provided the ONC samples and the left, contralateral, unoperated eye provided the control (6 pooled
eyes for each of three biological replicates per time point). Three biological replicates of surgically naive eyes were also collected (see text). Red
bars indicate the anatomical locations of the optic nerve crush and spinal cord lesions. Dotted red arrows indicate the trajectories of the axons
injured by the surgeries whose cell bodies are located in the tissues sampled for RNA-seq. e Diagram summarizing the workflow of the study (see
text for details). f1–3 Summary characteristics of the RNA-seq data. f1, a histogram of the number of successfully aligned reads in each of the 51
samples (17 conditions, 3 biological replicates each). f2, an example of histograms of expression values [log10(FPKM)] per gene, averaged across
the biological replicates, normalized for the total number of genes assayed (Gene Density). Data for the 1 week SCI tadpole hindbrain (gray) is
superimposed upon that of its age-matched control (blue). The inflection point (dotted vertical line) was used to set a threshold for the fpkm of
actively expressed genes. Values below this were categorized as representing no expression. f3, Whisker plot summarizing the data dispersion for
all 17 conditions (3 biological replicates per condition). The median log10(FPKM) is represented as a horizontal line through the box, which in turn
delimits the 2nd (lower) and 3rd (upper) quartiles of the data. Whiskers illustrate the 1st and 4th quartiles, with their minimum and maximum
values, respectively. Abbreviations: CNS, central nervous system; Cntrl, control; FPKM, fragments per kilobase of exon mapped; Juv., juvenile frog;
ONC, optic nerve crush; SCI, spinal cord injury; Tad., tadpole; Tx, transection; Unop, unoperated
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each time point to further distinguish effects directly as-
sociated with axon regeneration from indirect injury re-
sponses [126, 128]. This is important because the
unoperated contralateral eye also responds to a unilat-
eral nerve crush through indirect effects on retinal cir-
cuitry [3, 41, 127]. To assay this indirect response, we
included for eye an extra control group of surgically
naive, unoperated animals for future studies; this group
was included in the PCA but was not used otherwise for
differential gene expression analysis (see below).
Fastq files containing the sorted raw sequences were

aligned against the Xenopus laevis genome (Xenbase
v9.1; http://www.xenbase.org/ RRID:SCR_003280) using
Bowtie2 (v2.2.9) [66] and TopHat (v2.1.1) [138], and an-
notated using the Mayball gene model [24, 106, 108].
The alignments yielded 34.4 ± 3.1 (S.D.) million success-
fully aligned reads per sample (Fig. 1f1), with only 9.6 ±
2.9%, (S.D.) reads initially flagged as potentially duplicate
alignments. Such potential duplicates can occur in Xen-
opus laevis due to its ancestrally (~ 30 Mya) duplicated
genome [121]. The vast majority of these potential dupli-
cates were resolved by assigning the alignment with the
higher score to separate genes on different chromosomes
(referred to in X. laevis as S and L homeologs). For the
small remainder (< 10% of potentially duplicate align-
ments), reads were randomly distributed between the
two homeologs. To confirm the accuracy of this proced-
ure, we visualized a subset directly (Integrative Genom-
ics Viewer (IGV), v2.3.88 [115, 136]). The fastq files and
gene counts are both available in Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE137844. Note here that
gene nomenclature in Xenopus laevis is based on pro-
spective orthology with human genes [121]. Due to the
ancient genome duplication and long evolutionary diver-
gence time between X. laevis and human (> 300 Mya),
the L and S X. laevis homeologs may have more or fewer
paralogs than their human orthologs. For the initial gene
counts, we enumerated these separately, because dupli-
cate genes can have different expression patterns, poten-
tially leading to different functions [96, 116]. Generally
speaking, L homeologs are expressed at higher levels
than S homeologs [121], and not surprisingly, they ap-
peared more frequently than S homeologs in our gene
lists, since efficiency of gene calls tends to correlate with
expression level. Functional comparisons necessarily
combined homeologs and paralogs under a single gene
term, since most functional studies are done in other
species and we cannot a priori evaluate the significance
of homeologs and paralogs for these genes. In addition,
for this study, we looked only at genes that have been
annotated in X. laevis, since the principal aim was to
evaluate these genes with regard to what is known from
other models about function. We left the analysis of

fastq files for the biological significance of multiple
homeologs and paralogs, as well as of novel genes lack-
ing human orthologs and other gene features such as
long non-coding RNAs, to future studies. Nonetheless,
for the interested reader, we have noted in Additional_
File4_DESR_Data.xlsm the expression behavior of
remaining homeologs and paralogs that were not differ-
entially expressed in our current analysis.
To generate gene lists for downstream data analysis of

differentially expressed genes (Fig. 1e), we used Cuf-
flinks/CuffDiff2 [113, 114, 137, 139, 140] and the associ-
ated utilities of CummeRbund (v2.16.0) [139]. We made
this choice primarily because CuffDiff2 uses a paired
means test to estimate Type I errors (p-values) for each
gene pair, independently of other genes. For each pair-
wise comparison, these unadjusted p-values were then
ranked among the other pair-wise comparisons to assess
the probability of false discovery (q) [14]. Because sam-
ples were complex tissues, with multiple cell types po-
tentially responding differently to the lesion, we felt that
this procedure of evaluating each gene pair independ-
ently was biologically more appropriate for our study
than other programs, such as DESeq2, which use a dif-
ference of variance test that incorporates the variance of
all the genes in a sample into its calculations [4, 79]. In
addition, unlike DESeq2, CuffDiff2 normalizes genes for
transcript length, making it possible to compare expres-
sion levels (FPKM) among different genes. Although we
used the CuffDiff2 outputs for downstream analyses
(Additional_File1_Differential_Expression_Analysis_by_
Cuffdif.xlsm), we provide DESeq2 outputs for the
interested reader (Additional_File2_Differential_Expres-
sion_Analysis_by_DESeq2.xlsm). Note that the overall
trends in the data with respect to temporal patterns of
differentially expressed genes and the degree of overlap
between different experiments at each time point
matched well between the two programs (seen by com-
paring the CuffDiff2 data of Fig. 2 with that of DESeq2
in Additional_File3_DESeq2_Metadata.pdf), except that
DESeq2 identified fewer differentially expressed genes
than CuffDiff2, with > 85% of them also called by
CuffDiff2.
We used an FDR ≤ 0.05 as the criterion for selecting

differentially expressed genes without regard to fold-
change, since cell types responding to axotomy represent
only a subset of cells in each tissue, and regulatory genes
typically exhibit smaller fold-changes in expression than
structural genes. We did, however, filter out genes with
expressions that fell below the minimal threshold in
both the experimental and paired control samples
(FPKM = 0.45; Fig. 1f2 [47]). Under these criteria and
sampling conditions, differentially expressed genes gen-
erally had |log2(fold-changes)| > 0.3, and unadjusted p
values of < 0.02. The percentage of differentially
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Fig. 2 (See legend on next page.)
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expressed genes in each sample ranged from 1.4% (3 day,
juvenile frog ONC eye) to 11.6% (3 day juvenile frog SCI
hindbrain) of the total annotated X. laevis genome (Fig.
2b; 100% = 24,382 genes).

Identifying shared features of injury-induced gene
expression between axon-regenerative vs. non-
regenerative CNS
The principal goal of this study was to identify cellular
processes potentially shared between the two regenerative
cases that were not shared with the non-regenerative case.
The first indication that such processes existed came from
the temporal patterns of numbers of differentially
expressed genes (Fig. 2a). The numbers of such genes in
the axon-regenerative tadpole SCI hindbrain and juvenile
ONC eye both reached their maximum at the peak
phase of regenerative axon outgrowth (7/11 days),
whereas that of the non-regenerative, juvenile frog
SCI hindbrain did so at 3 days.
To assess the degree to which these shared responses

involved the same genes, we examined at each time
point, the overlap among the three tissues (Fig. 2c,d,e).
This analysis identified 324 genes that were differentially
expressed in the two axon-regenerative CNS regions but
not in the non-regenerative one. We termed these genes
“Differentially Expressed in Successful Regeneration”
(DESR genes: 253 up-regulated; 71 down-regulated, with
some appearing at multiple time points). Although the
differentially expressed genes in each individual tissue
had a predicted FDR of < 0.05, because DESR genes were
the result of combining data from two independent ex-
periments, their expected FDR was actually much
smaller (< 0.052, which for 324 genes would be ~ 1 gene).
Overall, DESR genes comprised approximately 2.7%
(324/12,059) of all the injury-induced, differentially
expressed genes (Fig. 2c,d,e). This relatively small frac-
tion indicated that the vast majority of differentially
expressed genes in each tissue represented tissue-
specific responses to axotomy. The DESR expression
data, segregated by time point and including information
about related paralogs and homeologs, is provided in

Additional_File4_DESR_Data.xlsm. Meta analysis con-
ducted on DESeq2 data yielded very similar results
(Additional_File3_DESeq2_Metadata.pdf), indicating that
these findings were not simply an artifact of the differen-
tial expression algorithm.
We next used Principal Component Analysis to obtain

an overview of the relationships among gene expression
profiles of the various samples (Fig. 3). As implemented
in the Tuxedo Protocol (of which CuffDiff2 is a part),
PCA generates eigenvectors for each set of pooled bio-
logical replicates, with the angles between eigenvectors
indicating how well gene expression profiles are corre-
lated between conditions. Diminishing acute angles indi-
cate more highly correlated expression profiles, and
orthogonal and increasing divergent angles indicate
poorly and negatively correlated profiles, respectively.
When all 17 conditions were analyzed (Fig. 3a), the close
clustering of the eigenvectors of the eye samples and
their large divergence from the closely clustered hind-
brain vectors confirmed the conclusion from the overlap
analysis that tissue of origin exerted the strongest influ-
ence on expression profiles. Developmental stage, injury
condition, and time elapsed since injury exerted much
less influence. Separate PCA of only the SCI hindbrain
expression profiles (Fig. 3b) revealed that within this tis-
sue, regenerative capacity exerted the next strongest in-
fluence, with axon-regenerative tadpole eigenvectors
clustering separately from those of the non-regenerative
juvenile frog. As indicated by the angles between eigen-
vectors, the injury responses of the axon-regenerative
tadpole hindbrains differed more between the operated
samples and their age-matched, unoperated controls
than was the case for the non-regenerative frog hind-
brains, which were more tightly clustered. Moreover, the
large divergence between the SCI eigenvectors of their
respective peak time points for differential expression (7
days for tadpole and 3 days for frog) indicated that these
peak responses involved mostly different genes rather
than differences in the timing of differential expression
among the same genes. Similarly to tadpole SCI, the ei-
genvectors of the operated frog ONC eye also diverged

(See figure on previous page.)
Fig. 2 Temporal patterns of gene expression and shared injury-response genes between regenerative vs. non-regenerative tissues. a Regenerative
tissues [i.e., SCI tadpole hindbrain (SCI Tadpole) and ONC juvenile frog eye (ONC Juvenile)] shared similar temporal patterns of numbers of
significant (FDR < 0.05) differentially expressed genes, which differed markedly from that of the non-regenerative tissue [SCI juvenile frog
hindbrain (SCI Juvenile)]. Whereas the expression response of the two regenerative tissues peaked during the mid recovery phase (1 week/11
days), that of the non-regenerative tissue peaked at the early, post trauma phase (3 days). Up- and down-regulated genes are shown in green
and red, respectively; S & L gene homeologs were tallied separately. b Plot illustrating the percentage of annotated genes that were significantly
(FDR < 0.05) differentially expressed with injury (100% = 24,382 genes). Additional_File1_Differential_Expression_Analysis_by_Cuffdif.xlsm contains
the CuffDiff2 output files from which A and B were derived. c - e UpSet plots illustrating the number of genes overlapping between the samples
indicated by the circles below each bar at 3 days (c), 7/11 days (d), and 3 weeks (e) after injury. Numbers of shared up- and down-regulated
genes are indicated above and below each bar, respectively. The maximum number of overlapping genes between the two successfully
regenerative tissues (DESR: Differentially Expressed in Successful Regeneration) occurred during the peak phase of regenerative CNS axon
outgrowth. Additional_File4_DESR_Data.xlsm contains the DESR data
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extensively from those of their paired, contralateral
unoperated eye controls (Fig. 3c). Also similar to tadpole
SCI, the close proximity of the 3-week operated and
contralateral unoperated eigenvectors with that of eyes
from unoperated animals (termed surgically naïve) fur-
ther indicated that by 3 weeks, the injury response had
nearly, but not quite, returned to the pre-injury state. In
addition, the divergence of the eigenvectors of all the
contralateral unoperated controls diverged from that of
surgically naive eye, consistent with the expectation aris-
ing from biochemical studies demonstrating that the
unoperated eye in a unilateral ONC also responds to the
injury [3, 41, 127]. This observation further supports our
decision to compare operated eye with its unoperated
contralateral control to better emphasize changes dir-
ectly associated with regenerating an axon, as opposed
to more generalized responses associated with the trau-
matic disruption of visual neural circuitry [3]. Because
the bilateral nature of SCI abrogated such a distinction
in hindbrain, this comparison in eye acted as an add-
itional filter in the three-way comparison, to resolve
those injury-induced differences most directly related to
axon regeneration from those related more generally to
trauma. Scatterplot PCAs (Additional_File5_PCA_Scat-
terplot.pdf) generally confirmed the eigenvector PCA

analyses, while revealing additional details about the
variability of individual biological replicates. For ex-
ample, the known variability of the ONC injury response
at its beginning [3, 41, 151] was readily visible in the
PCA scatterplots at 3 days. Similarly in the scatter-
plots of tadpole SCI hindbrain at 3 weeks, two of
three replicates of the operated animals clustered
closely with their age-matched unoperated controls,
suggesting that animals in these two groups had re-
covered more fully than had those of the third. Such
variability is consistent with the large amount of vari-
ability seen from behavioral studies of full recovery
times from SCI in tadpoles [11, 42].

Identifying functional processes in successful CNS axon
regeneration
An initial examination of DESR genes supported their
biological relevance to CNS axon regeneration, since
many had been previously implicated in aspects of
neural injury, including (but not exclusive to) axon re-
generation [e.g., socs3 (Suppressor of Cytokine Signaling
3 [32, 107, 134, 151]), leptin [9, 13], fabp7 (fatty acid
binding protein 7, a.k.a. brain-lipid binding protein [6,
42, 52, 111]), mapk8 (JNK1 [51, 97]), sox11 [95]; sdcbp
(syntenin [158]), and prph (peripherin [41, 84], among

Fig. 3 Eigenvector representation of the Principal Component Analyses (PCA) of gene expression profiles. Eigenvectors depict relative degrees of
similarity among data sets, as indicated. Black points represent individual genes plotted against the principal axes of similarity (PC1, PC2). a, PCA
of all 17 experimental conditions and controls. b, PCA of SCI hindbrain samples and their unoperated controls. c, PCA of ONC operated eye
expression profiles, as well as those of their paired, contralateral unoperated control eyes and eyes of uninjured animals (surgically naive).
Abbreviations: Cntrl, control hindbrain; Juv, juvenile (1–3 month post-metamorphic) frog; ONC, optic nerve crush; PC1, principal component axis 1;
PC2, Principal Component axis 2; SCI, spinal cord injured; Tx, spinal cord transection; Unop, unoperated eye, contralateral to the ONC; Wk, week.
Additional_File5_PCA_Scatterplot.pdf shows PCA scatterplots
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others]. The hypothesis that CNS axon regeneration also
shares functional processes with other forms of tissue re-
generation was supported by some DESR genes having
been previously implicated in successful regeneration in
other contexts, including axolotl limb [e.g., tmsb4x [73,
109], anxa5 [62], and crabp2 [85])] and mammalian liver
[e.g., top2A (DNA topoisomerase 2a [28], C9 (comple-
ment C9 [112, 133]), and rrm2 (ribonucleoside reductase
regulatory subunit M2 [77])].
Thus, we felt justified in using DESR genes to further

explore potential cellular processes in successful CNS
axon regeneration. For this analysis, we combined two
approaches. First, we conducted an automated gene
ontology analysis (GO term; Metascape [141]) of the
DESR genes at the peak period of regenerative axon out-
growth (1 week/ 11 days for SCI hindbrain and ONC
eye, respectively), for significant enrichment (−log10(P) >
4) of processes associated with these genes. This analysis
primarily yielded GO terms related to cell division and
mitotic control, inflammatory responses, innate immun-
ity, wound healing, and stress responses, as well as terms
associated with RNA trafficking and turnover, JAK/
STAT signaling, development and differentiation, mye-
loid cell activity, control of gene expression and chroma-
tin remodeling, microfilament/microtubule dynamics,
and cellular metabolism. Because relatively few DESR
genes were represented at the early and late time points,
GO term analysis for these time points was less fruitful,
since many genes were omitted. Thus, we complemented
the GO term analysis with a manual survey of every
DESR gene’s known functions. For this stage of the ana-
lysis, we consulted PubMed and Gene Cards for the
known functions related to each gene’s orthologs across
species, paying special attention to functions related to
injury (both traumatic and disease-related) and regener-
ation (both neural and non-neural), as well as processes
identified by the GO term analysis. These functions are
listed for each gene individually in Additional_File4_
DESR_Data.xlsm. We then grouped DESR genes into
categories. The results of this combined summary
analysis, with genes arranged according to functional
categories and time of differential expression in axon-
regenerative CNS regions, are presented in Additional_
File6_DESR_Functional_Categories.pdf.
In this analysis, DESR genes fell into eleven such cat-

egories (Fig. 4; ordered from largest to smallest): Inflam-
matory Response and Wound Healing, Cytoskeletal, Cell
Signaling, Intracellular Transport, Post-transcriptional
Regulation of gene expression, Epigenetic control of
gene expression, Axon Outgrowth (tropic and trophic
effectors and inhibitors), DNA Replication/Repair, Lipid
Metabolism, Transcription Factors, and Cellular Metab-
olism. All eleven categories were represented during the
peak regenerative phase, reflecting the wide range of

cellular processes that are active then. Five of these
eleven were limited to just the peak phase, indicating
these processes were relatively inactive at other time
points: 1) Cell Signaling, 2) Intracellular Transport, 3)
Axon Outgrowth, 4) Lipid Metabolism, and 5) Cellular
Metabolism.
DNA Replication/Repair DESR genes were found at

only the early and middle time points. At the early time
point, one gene in this category was down-regulated in
successful but up-regulated in unsuccessful CNS axon
regeneration, suggesting it is important for determining
regenerative success (hp1bp3, a mitotic checkpoint pro-
tein involved in maintaining heterochromatin integrity
during the G1/S transition [30, 31]). At the middle time
point, 5 additional mitotic checkpoint proteins were up-
regulated, suggesting mitotic checkpoint-related genes
are especially important for promoting the peak phase of
regenerative outgrowth. Because injured neurons are
post-mitotic, these checkpoint genes may have other
functions in regeneration than regulating mitosis. In that
regard, mitotic checkpoint genes are increasingly under-
stood as important for giving cells time to rearrange
their chromosomes in preparation for major changes in
gene expression [90]. The remaining twelve up-regulated
genes at 7/11 days are typically considered to be more
directly involved in DNA replication and repair. They
may thus reflect the proliferation of glia and myeloid
cells that influence the injury response, since the axoto-
mized neurons themselves are post-mitotic. None of
these DNA Replication/Repair genes were found at 3
weeks, indicating that by this time, such activities were
no longer active.
The remaining five categories spanned all three time

points, providing insights into how these functions
evolved throughout recovery. The largest category com-
prised Inflammatory Response DESR genes. These genes
represented functions related to regulating inflamma-
tion, innate immunity, wound healing, and cell survival
responses, as well as tissue repair and regeneration. Such
genes are known principally from mammalian studies,
wherein inflammation is crucial for initiating and main-
taining pro-regenerative responses to injury [16]. How-
ever, because inflammation also damages tissues, it has
been difficult from mammalian studies to parse
inflammation-related pro-regenerative genes from those
detrimental to recovery. Their preferential up- or down-
regulation in Xenopus axon-regenerative CNS tissues
thus provides clues as to which genes are beneficial to
regeneration. Moreover, the involvement of many of
these genes in wound responses and inflammation is
known from studies that either included the injury site
or involved non-neural tissues, such as liver or fish tail
fin. Thus, their identification in this study also shows
their relevance extends more broadly, beyond tissue
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repair, to CNS axon regeneration. At the early time
point, up-regulated Inflammatory Response DESR genes
(i.e., recovery promoting) were dominated by ones typic-
ally considered pro-inflammatory (7 genes) and genes
activated by JAK/STAT signaling through cytokine re-
ceptors (3 genes). The two down-regulated genes in this
category (i.e., recovery inhibiting) at this early time point
were a cytokeratin that is otherwise up-regulated at
mammalian wound sites (krt6a) and a pro-inflammatory,
calcium-binding protein secreted by macrophages
(ocm2). At the middle time point marking the peak
axon-regenerative response, there were two up-regulated
pro-inflammatory genes held over from 3 days, and
seven new ones, along with many additional up-
regulated genes implicated in other inflammatory and
wound-healing processes: protein ubiquitination and
turnover (11 genes), chaperones (4 genes), cell survival
and tissue repair (10 genes), stress response (7 genes),
myeloid cell activity (5 genes), and the transition from
M1 to M2 macrophages (3 genes). Conversely, down-
regulated DESR genes (i.e., regeneration inhibiting) at
the middle time point included genes previously associ-
ated with exacerbating inflammation, cell death, and scar
formation (10 genes), genes associated with oxidative
stress (2 genes), myeloid cell activities (2 genes), and
with maintaining the blood-brain barrier (1 genes), plus
a heat-shock protein (1 gene). At the late time point (3
weeks), all nine Inflammatory Response DESR genes
were up-regulated genes previously implicated in pro-
tecting cells from detrimental hyper-inflammation and
in promoting cellular repair and regeneration, mostly in
contexts not previously directly associated with CNS
axon regeneration.
The second largest category of DESR genes found at

all three time points were those associated with the cyto-
skeleton. At three days, all four cytoskeletal-related
DESR genes were down-regulated: two cytokeratins and
two specific actin subtypes. One of the cytokeratins,
krt6a (previously mentioned in wound healing), has been
previously associated with epithelial lesions in mice
[153]. Knocking it out makes such wounds more fragile
[153], suggesting that in the CNS, this gene helps re-
model tissues to promote early stages of axon

outgrowth. Moreover, because our sampled tissues did
not include the lesion, this function is likely important
even at distances removed from the injury site itself. At
the peak phase of regenerative axon outgrowth, all the
cytoskeletal-related DESR genes were specific tubulin
and actin subtypes, along with proteins associated with
regulating microtubule- and microfilament-mediated
transport and dynamics. All but four were up-regulated
(27 total). Collectively, they emphasized the importance
of microfilament and microtubule-associated dynamics
for axon outgrowth, intracellular transport, cell motility,
and cellular proliferation for successful axon-
regeneration, while at the same time confirming and ex-
tending the identification of specific genes associated
with these processes in CNS axon regeneration. For ex-
ample, tuba1a and tubb2b, which are neuronal α- and
β-tubulin subtypes, had been previously associated with
developing and regenerating CNS axons [88, 144],
whereas dynnl2, a minus end-directed microtubule
motor protein involved in the retrograde transport of
proteasomes, is novel to axon regeneration. At the late
time point, there were only two cytoskeletal-related
DESR genes, both of which were up-regulated. They
were an intermediate filament gene, prph (peripherin),
which was already known to be up-regulated in both re-
active glia and regenerating optic axons in Xenopus [41,
84]. Prph was also up-regulated in both regenerative and
non-regenerative cases at earlier time points, but its
preferential up-regulation at 3 weeks in axon-
regenerative CNS over non-regenerative CNS suggests
its importance in successful regeneration persists into
late recovery. The remaining up-regulated cytoskeletal-
related gene at 3 weeks, ebf3, has dual functions in pro-
moting microtubule bundling and as a transcription co-
factor that inhibits gliogenesis [17, 72], suggesting novel
functions for promoting recovery during the late phase.
The third category of DESR genes represented at all

three time points comprised genes involved in post-
transcriptional control of gene expression. Post-
transcriptional control of gene expression is already
known to be important for successful CNS axon regen-
eration [51, 76], but the specific genes involved are still
being discovered. This study suggests new genes. For

(See figure on previous page.)
Fig. 4 Grouping DESR genes by known functions provided insights into processes underlying successful CNS axon regeneration. a Curating DESR
genes based on functions documented in the scientific literature (see text for details) parsed them into eleven categories. Vertical boxes outline
functional categories present at all three time points. Boxes with arrows list prominent functional sub-categories at the different time points (see
text for details). Green shades, upregulated genes; red shades, down-regulated genes (S & L homeologs tallied separately).b Pie charts display
data from (a) according to each category’s relative contribution (%) to the total number of DESR genes and are scaled in size to reflect the total
number of DESR genes at each time point (N). Additional_File6_DESR_Functional_Categories.pdf contains a list of the DESR genes, separated by
time point and category, along with relevant literature citations supporting the functional categorization. Because functions are mostly based on
mammalian studies, and Xenopus generally has more than one homeolog for each human gene, they are listed without regard to which
homeolog is differentially expressed. Detailed data for individual homeologs are in Additional_File4_DESR_Data.xlsm
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example, at the early time point, DESR genes in this cat-
egory primarily reflected changes in translational control
of mRNAs. This is an understudied, potentially
important function for promoting successful recovery
from CNS injury, because stressed cells utilize cap-
independent mRNA translation to ensure that proteins
needed for survival are synthesized, while they simultan-
eously inhibit cap-dependent translation to facilitate cel-
lular reprogramming in preparation for the next phase
of the stress response [64]. Our data identified eif5b, a
translation initiation factor that promotes IRES-
dependent mRNA translation [38], as one such gene po-
tentially important for CNS axon regeneration. Another
Post-transcriptional Regulation DESR gene at 3 days was
a 60S ribosomal protein, rplp1, which is essential for
brain development due to its effects on cyclin and p63
protein expression [103]. During neural development,
specific ribosomal proteins are often needed for selective
translation of individual mRNAs [132], and this gene
was down-regulated in the two regenerative tissues but
up-regulated in non-regenerative frog SCI hindbrain,
suggesting a purposeful role in determining regenerative
success. The middle time point saw the up-regulation,
and no down-regulation, of multiple Post-transcriptional
Regulation DESR genes, spanning a range of RNA-
related functions, including eight splicing factors, four
additional ribosomal subunits, five mRNA translation
initiation and elongation factors, and three regulators of
mRNA trafficking and turnover. These most likely repre-
sent post-translational aspects of the onset of expression
of the many genes involved in CNS axon regeneration.
Most of these DESR genes were newly implicated here
in CNS axon regeneration, although a few had been im-
plicated previously in related contexts. For example, two
up-regulated splicing factors, snrpd3 and snrpn, have
been associated with neurodegeneration in Spinal
Muscular Atrophy [37] and with developmental axon
outgrowth [157], respectively. Prmt1 is the primary
methylase targeting hnRNP K [20], which is an RNA-
binding protein that regulates nuclear export and trans-
lation of cytoskeletal-related mRNAs essential for optic
axon regeneration in Xenopus [76]. Its selective up-
regulation in the two regenerative CNS regions suggests
a previously unrecognized role for methylation of
hnRNP K, as well as its histone targets, in recovery from
CNS trauma. The late recovery phase saw only the up-
regulation of two transcripts of RNA-binding proteins
that regulate trafficking, translation, and turnover of spe-
cific mRNAs: AldoA stabilizes mRNAs of neurofilaments
[19]), which consolidate axonal growth and expand axon
caliber once growing axons contact their targets [118,
120, 146]. Thus, this aldoA increase is consistent with 3
weeks being a phase of consolidation and refinement of
synaptic connections [128]. The other up-regulated

mRNA, mex3a, encodes an RNA-binding protein impli-
cated in regulating neurogenesis and degeneration [10],
suggestive of a previously unrecognized role for mex3a
target-transcripts in CNS axon regeneration.
The fourth most numerous category with representa-

tion at all 3 time points (26 genes) comprised genes im-
plicated in epigenetic control of gene expression, which
is increasingly recognized as crucial for regeneration of
organs and tissues in other contexts (reviewed in [83]).
At the 3-day time point, the two DESR genes in this cat-
egory were down-regulated, specialized histone variants:
hist1h4k, an H4 gene variant implicated in protecting
cells from DNA damage by facilitating DNA double
strand break repair [71], suggesting it may play a role
here in protecting injured cells; and hist2h2ab, an H2
gene variant involved in nucleosome repositioning in
preparation for transcription [119]). Nucleosome reposi-
tioning is a theme that persisted into the peak phase of
regenerative axon outgrowth, with hist2hab at this next
phase now switching from a down-regulated to an up-
regulated DESR gene, and five additional genes known
to be involved in nucleosome repositioning (four up-
regulated; one down-regulated) appearing. The
remaining 19 DESR genes in the Epigenetic category (13
up-regulated, 6 down-regulated) are all known to play
various roles in enzymatically modifying histones and
DNA through acetylation and methylation. Two of these
were down-regulated components of the Polycomb Re-
pressive Complex (PRC), newly implicating it here in
successful CNS axon regeneration, although the PRC
has already been implicated in tissue regeneration in
other contexts [23, 27, 81, 122]. One of these two PRC
genes, jarid2, persisted as the sole epigenetic-related
gene in the late recovery phase, when it continued to be
down-regulated.
The final DESR category represented at all three time

points comprised genes associated with transcriptional
control. At the earliest time point, only one such gene
was up-regulated, ddit3, which is a C/EBP-related tran-
scription factor needed to activate pro-inflammatory
signals [101]. Ddit3 has been previously reported as up-
regulated in response to optic nerve injury in mouse
[34] but had not been previously implicated in successful
CNS axon regeneration. No transcriptional control
DESR genes were down-regulated at this early time
point. The peak phase of regenerative axon outgrowth
saw eight up-regulated and three down-regulated tran-
scription factors and co-factors. Two of the up-regulated
ones were already known from previous studies in mam-
mals to play important roles in SCI – hes5 and sox11
[56, 95, 149]; two additional ones (bcl6 and mllt11) were
known from cancer studies as modulators of STAT3 [89,
99], which is a transcription factor known to play an im-
portant role in regulating inflammation-mediated
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responses during tissue regeneration. However, to our
knowledge, neither of these two regulatory STAT3 co-
factors had previously been implicated in successful
CNS axon regeneration. Another down-regulated gene
in this category at the middle time point was znf395, a
zinc-finger transcription factor that activates pro-
inflammatory cytokines [49], newly implicating it here in
limiting aspects of inflammation that are detrimental to
CNS axon regeneration. The two sole transcription fac-
tor DESR genes at 3 weeks were both up-regulated (ebf3
and irf8). Each has known roles in regulating genes in-
volved in apoptosis and in suppressing a hyper-immune
response in macrophages, respectively [53, 72]. These
functions are consistent with limiting inflammation and
its detrimental effects continuing to be important well
into the late stages of recovery.

The KEGG Adipocytokine signaling pathway comprised
multiple DESR genes
Gene regulatory networks often comprise genes with dif-
ferent cellular functions. Therefore, to identify gene
regulatory networks potentially involved in successful
CNS axon regeneration, we analyzed KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways for en-
richment in DESR genes. In one such analysis we input
all the DESR genes found at more than one time point,
with the aim of highlighting regulatory networks that
were active throughout regeneration. This analysis iden-
tified a single network, the KEGG Adipocytokine signal-
ing pathway (map04920; Fig. 5). This network contained
four up-regulated DESR genes: lep (leptin), socs3 (sup-
pressor of cytokine signaling 3), mapk8 (JNK1) and
acsbg2 (Acetyl-CoA synthetase bubblegum family mem-
ber 2; labeled as FACS in Fig. 5). The up-regulation of
these genes suggested they were all pro-regenerative in
this context, which was surprising for socs3, because in
mammalian studies, it is generally considered inhibitory
to CNS axon regeneration [123] (but see [107] for a po-
tential resolution to this paradox). In mammalian stud-
ies, this pathway interconnects the control of cellular
metabolism with inflammatory and stress responses, in-
tegrating downstream pathways known from studies
across different systems to be involved in various aspects
of tissue regeneration. These sub-pathways include JAK/
STAT signaling [15, 16, 107, 134], control of axonal
transport and synthesis of axonal cytoskeletal proteins
via JNK signaling [51, 97], cap-dependent mRNA trans-
lation through mTOR [1, 82, 100], and the metabolic
regulation of both DNA methylation and histone acetyl-
ation/methylation [148, 150]. In addition to these four
DESR genes, a further 60% (69/115) of the annotated X.
laevis genes belonging to this pathway were found to be
potentially differentially expressed (either up- or down-
regulated) upon injury (p ≤ 0.02) during at least one time

point, in at least one of the three tissues (Fig. 5). Such
complex, temporally variable behavior of these additional
network elements suggested that maintaining flexibility
of this network throughout regeneration is an important
feature for CNS axon regeneration. Collectively, these
properties implicate this network as a key hub within
the larger network of CNS injury response genes.

The majority (55%) of DESR genes exhibiting opposing
expression between successful and unsuccessful
regeneration were functionally inter-connected
We next reasoned that genes that were significantly, dif-
ferentially expressed in opposing directions in the two
regenerative cases (R) vs. the non-regenerative case (NR)
(i.e., up-regulated in the first two and down-regulated in
the last, and vice versa) would be especially instructive
in providing insights into changes in gene expression
that are purposeful for determining the success or failure
CNS axon regeneration. Thirty-three DESR genes exhib-
ited such opposing expression (Fig. 6a; also green and
red fonts in Additional_File6_DESR_Functional_Cate-
gories.pdf). Genes up-regulated in the regenerative cases
and down-regulated in the non-regenerative case, and
vice versa, were classified as regeneration-promoting and
-inhibiting, respectively. The identities and known func-
tions of thirteen of these genes supported this
classification. Nine regeneration-promoting genes were
previously known to promote either tissue regeneration
and axon outgrowth in general, or cell survival in trauma
and degenerative diseases: ltf (lactoferrin, an iron-
binding, neuroprotective gene [117]), otop3 (otopetrin 3,
a member of a gene family that down-regulates inflam-
mation [147]), mcm6 (minichromosome maintenance
complex component 6, implicated in Müller cell-derived
neurogenesis in retinal regeneration [92]), tubb2b and
tuba3d (neuronal tubulins upregulated in axonogenesis
[86, 88]), ttl (tubulin tyrosine ligase, required for retro-
grade transport of pro-regenerative signals after axotomy
[124]), fabp3 (fatty acid binding protein 3, linked to par-
tially successful recovery from spinal cord injury in
opossum neonates [94]), fabp7 (brain lipid binding pro-
tein, a marker for radial glial endfeet, which guide grow-
ing axons [6]), and fads1 (fatty acid desaturase 1, linked
with suppressing inflammation in liver disease [46]). The
functions of the previously known four inhibitory genes
were all associated with aggravating inflammation, pro-
moting degeneration, and inhibiting tissue regeneration
in various contexts: enpp2 (autotaxin, a stimulator of in-
flammation [22, 63]), slc9a3R2 (a suppressor of STAT3,
pro-healing signaling in colon cancer [156]), plp1
(proteolipid protein 1, a major component of mature oli-
godendrocytes, which inhibit CNS axon regeneration
[65, 155]), and znf395 (zinc finger protein 395, a tran-
scriptional activator of pro-inflammatory cytokines [49]).
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The remaining twenty oppositely expressed DESR genes
had not previously been associated with processes po-
tentially relevant for CNS injury, inviting further study.
To further explore potential functional inter-

relationships among these 33 oppositely expressed DESR

genes, we performed STRING analysis for known/pre-
dicted protein-protein interactions and functional inter-
relationships [130] (Fig. 6b). Eighteen of the 33 genes
had such interactions, generating a network of five inter-
connected clusters (confidence = 0.300): 1) two

Fig. 5 KEGG pathway analyses of DESR genes expressed across multiple time points implicated the Adipocytokine signaling pathway as playing a
prominent role in successful CNS axon regeneration. Black pentagons identify DESR’s. Ellipses indicate differential expression (DE; FDR < 0.05) in
response to injury (up or down) in at least one tissue, during at least one time point. The Adipocytokine signaling pathway image was obtained
from KEGG (Kyoto Encyclopedia of Genes and Genomes). Additional_File7_Adipocytokine_Signaling_Pathway_Gene_Expression_Data.xlsm
contains an Excel spreadsheet with all 115 genes (S&L homeologs are separate entries) belonging to this pathway, together with their ΔFPKM
values [log2(fold change, injury/control)], and their p and q (FDR-adjusted p) values for differential expression, at each time point, for all
three tissues
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regulators of mRNA translation; 2) three specialized his-
tones; 3) six other genes associated with epigenetic
changes in gene expression, including one such regu-
lated gene that is part of and therefore potentially con-
nects this network to the adipocytokine signaling
pathway, abcb1 [154]; 4) three metabolic enzymes, one
of which (idh1) regulates the TET enzymes that modu-
late DNA methylation states [110]; 5) and four
microtubule-related genes, which serve to drive cell mo-
tility, axonal transport, and axon outgrowth (e.g., [61]).
These genes thus form a nascent gene regulatory net-
work potentially linking changes in cellular metabolism
with epigenetic reprogramming and post-
transcriptionally regulated changes in gene expression,
converging upon cytoskeletal structural genes to drive
axon outgrowth. At the regulatory heart of this network
were genes involved in the epigenetic control of gene ex-
pression (dotted-lined box, Fig. 6).

In situ hybridization of retina to identify cell types
expressing key DESR genes
To begin to identify cell types responding to axotomy
through expression changes in key DESR genes, we per-
formed in situ hybridization on retina at the peak phase
of regenerative axon outgrowth for select genes, focusing
primarily, but not exclusively, on the two networks just
discussed (Fig. 7). We chose retina over hindbrain for
these studies because the anatomical organization of ret-
ina greatly simplifies identifying cell types. For example,
because frog retina receives no external afferents, ONC
damages only the optic axons, which originate from ret-
inal ganglion cells. These cells constitute the vast major-
ity of cells in the ganglion cell layer, making them
anatomically distinct from other local circuitry neurons,
such as bipolar cells, and Müller cell astroglia. Both cell
types can be indirectly affected by optic nerve injury and
their cell bodies occupy other retinal layers [2, 84]. The

situation is more complex in hindbrain, which harbors
not only the axotomized neuronal cell bodies but also
ascending axons damaged by the SCI. In addition, the
axotomized hindbrain neurons are anatomically inter-
mixed with other local neurons, making it essential to
distinguish them through applying retrograde tracers
[44]. Finally, because the injured and control hindbrain
are necessarily in different animals, it is harder to ensure
that hybridization conditions are precisely matched than
it is for retina, where both the operated and unoperated
eye occupy the same section.
For key up-regulated DESR genes, we chose leptin and

socs3 from the Adipocytokine Signaling pathway, prmt1,
which methylates both hnRNP K and histones, and idh1
and ezh2, which are two epigenetic-related genes from
the network of Fig. 6b. For down-regulated genes, we
chose jarid2 and suz12, which belong to the Polycomb
Repressive Complex 2 and are also part of the same net-
work as idh1 and ezh2 (Fig. 6b). These genes were also
chosen because they represented a wide range of expres-
sion levels, from abundantly expressed (FPKM > 100) to
moderately and poorly expressed genes (FPKM < 50),
and because they spanned the range of FDRs from <.002
to 0.05. Relative differences in expression from experi-
mental to control (|log2(fold-change)|) also spanned the
full spectrum – from 0.3 (the smallest significant
change) to 2.8 (one of the largest). (It should be noted
here that because probes for in situ hybridization do not
distinguish between homeologs, the RNA-seq data in
Fig. 7 represent values combined for the two homeo-
logs). In all cases, the overall intensity of labeling and
the relative difference between operated and unoperated
eyes reflected the magnitudes seen in the RNA-seq data.
Increases in the two up-regulated adipocytokine signal-
ing pathway genes, and in idh1 and ezh2 were confined
to the retinal ganglion cell layer. The changes in expres-
sion of the remaining up-regulated gene, prmt1, as well

(See figure on previous page.)
Fig. 6 DESR genes exhibiting opposing expression changes in regenerative vs. non-regenerative CNS identified inter-relationships among genes
involved in cellular metabolism, post-transcriptional and epigenetic gene regulation, and microtubule dynamics in successful vs. unsuccessful CNS
axon regeneration. a DESR genes that exhibited opposing expression between the two regenerative tissues (R: tadpole SCI hindbrain & juvenile
frog ONC eye) vs. the non-regenerative tissue (NR: juvenile frog SCI hindbrain), sorted by the functional categories of Fig. 4. Green and red
indicate genes that were up- and down-regulated significantly, respectively, with injury in the two regenerative tissues (R); these also exhibited
significant differential expression with injury in the non-regenerative, juvenile frog SCI hindbrain (NR), but in the opposing direction. Gene
symbols correspond with their human orthologs, and S & L homeologs/paralogs are combined into a single listing (see the explanation in Fig. 5).
b The protein-protein interaction network of the genes in (a), as predicted by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING,
v10.5). Fifty five per cent (18/33) of oppositely expressed genes between regenerative and non-regenerative tissues were interconnected through
interacting functions and molecular interactions associated with the cytoskeleton, DNA methylation, mRNA translation, histones and their
epigenetic modifications, and cellular metabolism. The image was generated by STRING (https: //string-db.org; confidence level, 0.300; K-means
clustering, k = 5). There were 22 edges with a PPI (protein-protein interaction) enrichment p-value = 0.0005. Colors of edges refer to the type of
evidence linking the corresponding proteins (see Edge Legend, lower left). Inter-cluster edges are represented as dashed-lines. The dotted square
highlights genes directly involved in epigenetic regulation of gene expression at promoters and enhancers. JARID2, SUZ12, and EZH2 are
components of Polycomb Repressive Complex 2 (PRC2). EZH2 also plays a role in targeting DNMT3 to DNA. JHDM1D (also known as KDM7) is a
principal demethylase for H3K9 and H3K27, prominent sites that interact with PRC2. IDH1 is a metabolic enzyme that stimulates TET, the enzyme
principally responsible for converting 5mC to 5hmC & 5C
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as the two down-regulated components of the Polycomb
Repressive Complex 2 (jarid2, suz12), included but also
extended beyond the retinal ganglion cell layer, indicat-
ing that these changes in expression occurred more glo-
bally throughout the retina.

Discussion
We used a novel three-way comparison between a re-
gion of the CNS that successfully regenerates axons
throughout life (retina) against another that successfully
regenerates axons only transiently in development (hind-
brain), before and after the transition, to serve as a bio-
logical data filter for parsing core features of a successful
CNS axon-regenerative response from the thousands of
injury-induced changes in gene expression that other-
wise represented region-specific responses. The first in-
dication that the two regenerative cases uniquely shared
core features was the temporal pattern of the number of
injury-induced genes. Whereas this number reached a
maximum in the two regenerative cases during the peak
phase of axonal regrowth, it did so in the non-
regenerative case at the earliest time point. PCA corrob-
orated the conclusion that gene expression profiles were
largely tissue-specific, but closer inspection identified
shared features between the two regenerative tissues. For
example, PCA eigenvectors (Fig. 3) and scatter plots
(Additional_File5_PCA_Scatterplot.pdf) differed more
between injury and controls for both regenerative cases
than was the case for the non-regenerative case. The
lack of overlap between regenerative tadpole and non-
regenerative frog SCI hindbrain, even for different time
points, further indicated that the genes induced by SCI
were quite different between these two tissues through-
out regeneration. Individual DESR genes (324) far out
numbered injury-induced genes shared by all three tis-
sues (19 genes) at all time points, as well as the number
shared between regenerative and non-regenerative SCI
hindbrain at the peak phase of axonal regrowth (284
DESR genes vs. 101 shared regenerative/non-regenera-
tive SCI hindbrain genes). Collectively, these data sup-
ported the conclusion that beginning relatively soon
after injury, having the capacity to mount a successful
axon-regenerative response stimulates a markedly differ-
ent injury response from that of a non-regenerative

tissue, which in the latter, is more focused on attempting
rapid repair for survival than on axon regeneration.
Further insights into the nature of the cellular pro-

cesses uniquely shared between the two regenerative
cases came from the identities and subsequent analyses
of the DESR genes. In support of these genes being rele-
vant to CNS axon regeneration, DESR genes included
multiple genes previously implicated in CNS injury, al-
though mostly in other contexts, such as studies that in-
cluded the injury site, peripheral axon regeneration, and
resistance to neurodegenerative disease. This observation
emphasized the universality of those genes in other types
of CNS injury, as well as the phylogenetic conservation
of the processes they represented, thereby building con-
fidence in the data set. The data also included a large
number of DESR genes shared across a broad spectrum
of non-neural regenerating tissues, including zebrafish
tail fin, axolotl limbs, and mammalian liver, arguing fur-
ther that their importance extends beyond CNS axon re-
generation to vertebrate tissue regeneration in general,
and providing clues into aspects of a successful regen-
erative response that are universally shared among all
vertebrate regenerating tissues. The many additional,
novel genes implicated here for the first time in CNS
axon regeneration provide new targets for investigation.
Surveying the literature for what is known about each

DESR gene’s function sorted them into eleven broad
functional categories. Temporal differences in the com-
position of these categories provided further insights
into how core processes associated with successful CNS
axon regeneration shifted as axon regeneration pro-
gressed. For example, the onset of axon regeneration (3
days) was dominated by up-regulated pro-inflammatory
genes, several down-regulated cytoskeletal genes poten-
tially associated with scarring, and by genes indicative of
cellular reprogramming events. The latter included an
up-regulated gene associated with promoting non-cap
dependent mRNA translation (eif5b) and several down-
regulated ribosomal subunits, two down-regulated his-
tone subtypes associated with transcriptional activation,
a down-regulated mitotic check point protein (hp1bp3),
and an up-regulated C/EBP-related transcription factor
(ddit3) that is regulated by stress factors associated with
bacterial infections and with mammalian optic nerve in-
jury but which had not previously been implicated in

(See figure on previous page.)
Fig. 7 Cellular localization of select DESR genes by in situ hybridization of retina at the peak phase of regenerative axon outgrowth after optic
nerve injury. Genes are as indicated in their respective panels and represent a range of fold-change values (0.03 < |log2(fold change)| < 3), and
FDRs (0.002–0.05), as well as relatively low (FPKM < 50) and high (FPKM > 100) levels of expression. Examples of up-regulated (a – e) and down-
regulated (f, g) genes are included. Column 1 (left), operated eye; column 2 (right), contralateral unoperated eye from the same animal and
processed on the same slide as that of its adjacent column. Arrows indicate cells of the retinal ganglion cell layer, which comprises the neurons
that regenerate an axon. Abbreviations: RGC, retinal ganglion cells; INL, inner nuclear layer; PR, photoreceptors. Scale bar in G2 applies to
all panels
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successful CNS axon regeneration [34, 101]. At the peak
phase of regenerative axon outgrowth, all eleven func-
tional categories were represented, indicating high levels
of activity associated with these functional categories at
the most active time point. While the presence of DESR
genes previously implicated in regenerative and develop-
mental axon outgrowth helped to provide confidence in
the relevancy of the data to CNS axon regeneration, our
finding additional genes associated more generally with
cellular processes previously associated with wound
healing and tissue repair in other contexts provides new
gene targets for studying how the cellular processes with
which they are connected function specifically in CNS
axon regeneration. These processes included modulators
of Wnt-signaling [48], macrophage invasion and the
complement cascade [35, 74, 104], and modulators of
JAK/STAT signaling [54, 134]). Still more genes offered
important clues about which aspects of an inflammatory
response are pro-regenerative (i.e., up-regulated DESR
genes) as opposed to detrimental (i.e., down-regulated
DESR genes) to CNS axon regeneration, a distinction
that has been difficult to make from mammalian studies
[16]. Other DESR genes implicated cellular processes
that are new to CNS recovery (e.g., regulators of mitotic
checkpoints). The late time point, when axonal regrowth
was largely finished but synaptic connections were still
being refined, was dominated by up-regulated genes
known to promote cellular repair, suppress hyper-
inflammation, and stabilize the cytoskeleton. These func-
tions are understandable during a time when the initial
effects of trauma have been overcome, terminal axonal
arbors are being refined and consolidated, and physio-
logical gene functions are returning; the identification of
new, specific genes involved in these processes provide
new entry points for studies aimed at understanding and
promoting these beneficial processes.
To begin to elucidate gene regulatory networks poten-

tially occupying important hubs in the network of gene
responses promoting successful CNS axon regeneration,
we engaged in two exercises. In the first, we surveyed
KEGG pathways enriched with DESR genes, especially
genes that were differentially expressed at multiple time
points. This analysis identified the KEGG Adipocytokine
signaling pathway as enriched both for DESR genes and
for injury-induced differentially expressed genes in gen-
eral, independent of tissue regenerative capacity. The
four DESR genes in this pathway were uniformly up-
regulated, suggesting that their activation within this
network promotes regeneration. However, multiple
other differentially expressed genes belonging to this
network exhibited both up- and down-regulation at vari-
ous times in each of the tissues, further suggesting that
the dynamic behavior of this network influences regen-
erative success. The importance of individual

components of this pathway for wound repair and re-
generation had already been noted across a range of sys-
tems, both neural and non-neural. For example, leptin in
mammals has been implicated in the regenerative suc-
cess of both liver and muscle [67, 91, 145], and in zebra-
fish, it has been implicated in both restoration of a
damaged retina [159] and in recovery from heat-induced
stress [78]. In Xenopus, up-regulation of leptin has also
been noted in the regenerative response of the spinal
cord itself to SCI [134], and during development, it is in-
volved in activating canonical Wnt-signaling in neuro-
genic regions of the brain [13]. Our linking leptin to
axon-regenerative regions of the CNS that are otherwise
uninjured, and localizing the increased expression to the
axotomized retinal ganglion cells, which do not them-
selves undergo active proliferation after axotomy, sug-
gests that these cells use leptin to signal nearby support
cells, such as invading macrophages [45, 152] and react-
ive Müller glia [84]. Canonically, leptin and the adipocy-
tokine signaling pathway play a crucial role in
thermoregulation and dietary intake in mammals [18,
26]. Thus, our data from Xenopus adds to a growing
body of evidence supporting a phylogenetically ancient
linkage in vertebrates between the regulation of cellular
metabolism, the stress response, and the success or fail-
ure of organ and tissue regeneration both within and
outside the CNS, where the axotomized neurons them-
selves may be actively involved in the signaling.
Next, we examined the subset of DESR genes that ex-

hibited opposing expression patterns between regenera-
tive and non-regenerative tissues, reasoning that these
genes could provide insights into purposeful differences
between the two. For example, genes that were up-
regulated in the regenerative cases but down-regulated
in the non-regenerative case would likely be pro-
regenerative and vice versa. Of the 33 oppositely
expressed DESR genes, nine pro-regenerative (i.e., upreg-
ulated in axon-regenerative CNS and down-regulated in
non-regenerative CNS) and four regeneration inhibitory
(i.e., down-regulated in axon-regenerative CNS and up-
regulated in non-regenerative CNS) genes had previously
been implicated in either promoting or inhibiting regen-
eration and cell survival, respectively, in one or more
contexts, thereby helping to validate the list while
expanding its relevance to include CNS axon regener-
ation. Whereas KEGG analysis fits gene sets into known
biological pathways, STRING analysis can be used to
discover new gene networks from known interactions,
both physical and functional. STRING analysis of these
33 oppositely expressed DESR genes placed the majority
(18) into five interconnected clusters, with three clusters
comprising specialized histones and genes associated
with epigenetic control of gene expression at the center.
These five clusters could thus conceivably comprise the
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core of a nascent gene regulatory network for successful
CNS axon regeneration. In situ hybridization of a subset
of genes in this network found that all the pro-
regenerative genes were specifically up-regulated in the
axotomized retinal ganglion cells, whereas the two
regeneration-inhibitory components of the network,
which are part of the Polycomb Repressive Complex 2,
were down-regulated in multiple retinal layers. Surpris-
ingly, another member of Polycomb Repressive Complex
2, ezh2 was up-regulated in axotomized retinal ganglion
cells. Since ezh2 functions extend beyond the complex
to include methylation of DNA as well as histone sites
[75], its pro-regenerative activity is therefore likely to be
separate from its functions within the Polycomb Repres-
sive Complex. Examination of the known functions of
the genes in the central three clusters, together with
other epigenetic-related DESR genes (25 total), strongly
implicate increasing the accessibility of DNA for tran-
scription as being of central importance to determining
the success or failure of CNS axon regeneration.

Conclusions
A novel three-way comparison identified candidate
genes belonging to core processes shared by two CNS
regions that successfully regenerate axons, that distin-
guished them from one that does not (i.e., juvenile frog
ONC eye vs. tadpole SCI hindbrain vs. juvenile frog SCI
hindbrain, respectively). Unlike earlier studies of SCI
that included the lesion in the analyzed tissues, by ana-
lyzing the tissues of origin of the regenerating axons, this
study emphasized genes relevant for CNS axon regener-
ation over wound repair and tissue restoration. Even so,
many of the genes identified in our study were previ-
ously implicated in wound healing, tissue repair, and cell
survival, demonstrating that these processes are shared
with successful CNS axon regeneration. Because these
studies were mostly conducted in other tissues and spe-
cies, our study both demonstrated their phylogenetic
conservation and identified many new individual genes
associated with these processes as worthy targets of
study in CNS axon regeneration. Finally, because many
of these genes were implicated in mammals, where re-
covery is often incomplete, their identification in this
study provides clues as to which are beneficial to recov-
ery and which ones are detrimental. Network analyses of
DESR genes that were up-regulated at multiple time
points and of DESR genes that were oppositely
expressed in axon-regenerative vs. non-regenerative
CNS regions, respectively, identified the Adipocytokine
signaling pathway and a novel gene regulatory network
with epigenetic control of gene expression at its core, as
important hubs in the larger network of injury-response
genes associated with successful CNS axon regeneration.
In situ hybridization in ONC retina of representative

genes from these networks showed that the injury re-
sponse of some elements of these networks were re-
stricted to the axotomized neurons, whereas others
extended to neighboring cells, demonstrating that a suc-
cessful CNS axon-regenerative response to axotomy in-
directly invokes responses in neighboring cells that
could influence its success. This study thus provides
both a resource and a starting point for future investiga-
tions into the molecular underpinnings of successful
CNS axon regeneration.

Methods
Animal and surgical procedures
All animal procedures were approved by the Institutional
Animal Care and Use Committees (IACUC) of the Uni-
versity at Albany (optic nerve crush) and Morehead State
University (spinal cord transection), in accordance with
the National Institutes of Health Guide for the Care and
Use of Laboratory Animals. For the sake of consistency,
Xenopus laevis tadpoles and juvenile frogs were all from
an albino strain obtained from the same supplier (Xenopus
Express, Brooksville, FL). Prior to surgery, animals were
acclimated to the lab for at least a week, under a 12-h
light:12-h dark photoperiod, in tanks of conditioned water
at 22 °C, where they were fed every other day (Xenopus
Express SFF and TP, for frogs and tadpoles, respectively).
Optic nerve crush (ONC) surgeries were performed on
fully anesthetized (0.1% MS222, Sigma-Aldrich), 1–3
month, post-metamorphic albino frogs (unsexed juve-
niles), as described [160]. Briefly, the surgically exposed
optic nerve on the right side of the animal was crushed at
the orbit, approximately 0.5–1mm from the eye, using #5
Dumont forceps (Fig. 1d), 2–4 times, until the nerve
turned visibly clear within the epineural sheath. The
contralateral left eye served as the unoperated control.
Spinal cord transections (SCI) were performed on fully
anesthetized NF [93] stage 53 tadpoles (0.02–0.04%
MS222) and 1–3month post-metamorphic juvenile frogs
(Fig. 1d) of the same age as those used for ONC [42, 44].
The surgically exposed spinal cord was completely trans-
ected at the mid-thoracic level, and the success of the sur-
gery was confirmed at the time of surgery by passing a
Minutien pin (Fine Science Tools) through the injury site
while observing the spinal cord. To further confirm that
spinal cord transections were complete, animals were
tested the next day for residual movement. After surgery,
animals were maintained in tanks filled with aerated,
sterile-filtered, conditioned rearing water containing 4
mg/l gentamicin sulfate (Sigma-Aldrich) to guard against
infection.

RNA isolation
For each biological replicate, either five hindbrains (SCI)
or six eyes (ONC) were rapidly dissected from fully
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anesthetized (0.1% MS22) animals [3, 41, 42]. To
maximize RNA integrity, hindbrains were submerged
in RNAlater (ThermoFisher Scientific) at room
temperature, and eyes were homogenized immediately.
Tissues were homogenized (Polytron® PT 3000) at
23 °C in 500 μl of Lysis Buffer Q (Norgen Biotek
Corp., Ontario, Canada), supplemented with 5 μl β-
mercaptoethanol. Homogenates were then cleared by
centrifugation (23 °C, 15,000 rpm, 15 min), and total
RNA was isolated [RNA/DNA/Protein Purification
Plus Kit, Norgen Biotek Corp (cat# 47700); RNase-
free DNase I kit, Norgen Biotek (cat# 25710)]. A 2 μl
aliquot of this RNA solution was quantified (Nano-
drop® ND-1000 Spectrophotometer), and RNA quality
was preliminarily assessed by agarose gel electrophor-
esis (E-Gel® EX Agarose, E-Gel® iBase™ Power System,
ThermoFisher Scientific).

Library preparation and sequencing
Purified total RNA from all 51 samples was simultan-
eously sent for library preparation and sequencing
(Center for Genomics and Molecular Medicine, Univer-
sity of Louisville). There, RNA was again quantified
(Qubit™ Fluorometer) and assessed for quality [2100
Bioanalyzer, Agilent Technologies; RINʼs (RNA Integrity
Number): 9.0 ± 0.7 (mean ± SD; n = 51), range 7.6–10.0].
Ribosomal RNA-depleted RNA (0.5 μg) was subse-
quently used to make barcoded cDNA libraries [TruSeq
Stranded Total RNA LT Sample Prep Kit - Set A and B
(Illumina, cat# RS-122-2302), with Ribo-Zero® Gold
(Illumina)], which were pooled for sequencing [NextSeq
500; NextSeq 500/550 75 cycle High Output Kit v. 2
(Illumina)] in two runs to nominally yield 30 × 106, 75
base-pair (bp), single-end reads.

Read alignment and differential expression analysis
After assessing the raw fastq files for quality (FastQC
v0.11.5 [5]), reads were aligned against the Xenopus lae-
vis genome (Xenbase v9.1; http://www.xenbase.org/
RRID:SCR_003280) using Bowtie2 (v2.2.9) [66] and
TopHat (v2.1.1) [138], and then annotated using the
Mayball gene model [24, 106, 108]. The alignments
yielded 34.4 ± 3.1 (S.D.) million successfully aligned
reads per sample (Fig. 1f1), with only 9.6 ± 2.9%, (S.D.)
reads initially flagged as potentially duplicate alignments,
which can occur in Xenopus laevis due to its ancestrally
(~ 30 Mya) duplicated genome [121]. These potential
duplicate alignments were resolved for the vast majority
by using the alignment with the higher score to assign
them to separate genes on different chromosomes (re-
ferred to in X. laevis as S and L homeologs). For the
small remainder (< 10% of potentially duplicate align-
ments), reads were randomly distributed between the
two homeologs. To confirm the accuracy of the

alignments, a subset was visualized directly (Integrative
Genomics Viewer (IGV) (v2.3.88) [115, 136]).
Differential expression and associated analyses [disper-

sion plots, gene density histograms, and eigenvector
principal component analysis(PCA)] were carried out
using Cufflinks/Cuffdiff2 (v.2.2.1; per-condition disper-
sion with a minimum count of 10) [113, 114, 137, 139,
140] and associated utilities of CummeRbund (v2.16.0)
[139]. The gene density histograms were used to set the
threshold (FPKM = 0.45) for active gene expression (Fig.
1f2), and the dispersion plots were used to affirm that
samples being compared statistically had similar disper-
sions (Fig. 1f3). In CuffDiff2, reads are normalized for
transcript length, which enables comparing expression
levels among different genes, and a difference of means
test is performed across the biological replicates on
the log2(fold-changes) [i.e., log2(FPKMinjury/FPKMcon-

trol)] for each gene separately to obtain a p value.
These p values are then ranked to calculate an FDR
(q) [14]. Differences in individual tissues were consid-
ered significant for FDR < 0.05, without regard to the
magnitude of the change.
The same read alignments and gene counts, after they

were rlog-transformed, were also analyzed by DESeq2 [4,
79], and scatter-plot PCA representations were gener-
ated using the plotPCA function of DESeq2. For the lat-
ter, multiple PCA plots were generated over the range of
500 to 20,000 of the most highly-expressed genes, for
which no qualitative differences were observed. DESeq2,
unlike CuffDiff2, does not normalize genes for transcript
length and uses a variance test, which incorporates the
variance of all the genes in a sample, instead of a means
test that treats the variance of each gene separately. Be-
cause the tissues being analyzed comprised a complex
mix of cell types, each of which may respond differently
to the lesion, we used the CuffDiff2 data sets for subse-
quent downstream analyses.

Gene ontologies of differentially expressed genes
For each time point, overlapping differentially expressed
genes across the three conditions were identified using
Awk scripts. To identify DESR genes, the script first
identified differentially expressed genes in both regen-
erative tissues, then removed any that were also present
in the non-regenerative one. The final DESR gene list
was then analyzed for gene ontology (GO term) enrich-
ment (Metascape (v3.0) [141]). Then, a literature search
(PubMed; GeneCards) was conducted for each DESR
gene for additional information related to its function
that was relevant to processes potentially involved in
CNS regeneration [i.e., wound healing, inflammation, in-
nate immunity, tissue regeneration or degeneration, and
axon outgrowth], and as suggested by the GO term
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analysis, to yield the final classification of genes into 11
functional categories.

KEGG pathway and STRING analysis
DESR genes appearing at multiple time points were en-
tered into the KEGG pathway analysis tool (Kyoto
Encyclopedia of Genes and Genomes [57–59]; https://
www.genome.jp/kegg/). Oppositely regulated DESR genes
(i.e., up-regulated in both regenerative tissues but down-
regulated in the non-regenerative tissue, and vice versa),
were analyzed by the Search Tool for Retrieval of Interact-
ing Genes/Proteins to identify potential functional interac-
tions (STRING, v10.5 [129, 131]; https://string-db.org;
confidence level, 0.300; K-means clustering = 5). The Hu-
man Protein Complex Map (hu.MAP; http://proteincom-
plexes.org/) was used to identify proteins that physically
interact within macromolecular complexes [29].

In situ hybridization
cDNA templates for in vitro transcription of antisense
cRNA probes for in situ hybridization were prepared by
reverse transcriptase (Super Script IV VILO, Invitrogen)
polymerase chain reaction (Phusion High Fidelity PCR,
New England Biolabs) from total RNA isolated from juven-
ile frog brain, with the following primers: Leptin (LEP.L;
NCBI Accession number XM_018252815; length 278 nt)
forward – GAT CCA AGG ACG AGC TAT AAA AAC T,
reverse – GTA ACA GAC TGC GGA GGT TCT;
SOCS3.S (NCBI Accession number NM_001087305; length
611) forward– ATG GTA ACG CAG AGC AAG TTC
CCG, reverse– CGT TTT CTT TGT CTA CAC TGG
GGA; EZH2.L (NCBI Accession number XM_018266394;
length 251 nt) forward– GTA CAT GCG CTT ACG GCA
AC, reverse– AGG CTA CAG CAG TGA GTG TT;
IDH1.L (NCBI Accession number NM-001094553; length
250 nt) forward– AAC GCC AGG ATG TCC AAG AA,
reverse– TCT CAT CAG GTG TAA TAG TGG CA;
PRMT1.L (NCBI Accession number NM_001089302.1;
length 275 nt) forward– GAG GCG AAG ACC TGC AAC
AT, reverse– ACT TTC TTG GCA CCA GCC TT;
SUZ12.S (NCBI Accession number NM_001130944; length
273 nt) forward– CTG TCA AAC CTG CAC AGA CAA,
reverse– TGT CCT CTT TGG TCA CAT AGT TG; JAR-
ID2.L (NCBI Accession number BC086634.1; length 258
nt) forward – TGT GTT TTG CTT GGA GTG TGC, re-
verse – CAG GAT GAA GCA CTT TTG GAC A. Except
for socs3, T7 RNA polymerase promoter sequences were
added to the 5′ end of reverse primers for in vitro tran-
scription directly from PCR products. PCR product sizes
were confirmed on 1% agarose gels, and the products fur-
ther purified (Monarch PCR and DNA Cleanup Kit, New
England Biolabs). The socs3 RT-PCR product was cloned
into a plasmid having a T7 promoter [107] for in vitro tran-
scription. Digoxigenin-labeled antisense cRNA probes were

generated by in vitro transcription (DIG RNA Labeling Kit
(SP6/T7); Roche-Millipore Sigma).
For in situ hybridization, (3) fully anesthetized frogs

(0.1% MS-222) were intracardially perfused first with
Ringer’s solution containing MS-222 (112mM NaCl, 2
mM KCl, 1 mM CaCl2, 1.2 mM NaHCO3, 0.1% MS-222,
pH 7.4) and then with 4% paraformaldehyde in 0.1M so-
dium phosphate (pH 7.4; PB) for fixation. Heads were
then removed, cryoprotected in increasing concentra-
tions of sucrose solutions (10, 20, 30%) in PB, then em-
bedded in Tissue Freezing Medium (Triangle Biomedical
Sciences) and cryo-sectioned (Leica CM1950) to obtain
18 μm thick transverse sections, which contained both
eyes. These were thaw-mounted onto (+)-charged glass
slides (Tissue Tak, Polysciences), which were subse-
quently stored at − 20 °C. For staining, slides were post-
fixed in 4% paraformaldehyde in PB (20 min; 4 °C), then
treated with 10 μg/ml proteinase K (Sigma-Aldrich; 6
min; 37 °C) and re-fixed in 4% paraformaldehyde (20
min, 4 °C). Slides were then incubated in 0.2M HCl (30
min, room temperature) to inactivate endogenous alka-
line phosphatase. After several washes in PB, slides were
treated with 0.1M triethanolamine (pH 8)/0.25% acetic
anhydride, to further block non-specific hybridization,
and subsequently washed in 2x saline-sodium citrate
(SSC) buffer. Following a pre-hybridization incubation
[50% formamide, 1x Denhardts, 20 mM tris (pH 7.4), 1
mM EDTA, 0.3 M NaCl, 0.1 g/ml dextran sulfate, 0.1
mg/ml herring sperm DNA, and 0.25 mg/ml yeast RNA],
slides were hybridized with digoxigenin-labeled cRNA
probes (100 ng in 200 μl/slide, 20 h, 50 °C). After
hybridization, slides were treated with RNase A (20 μg/
ml RNase A, 0.5M NaCl, 0.25 mM EDTA, and 10mM
tris, pH 8) to further remove unhybridized probe. Slides
were next washed in 2x SSC (room temperature),
followed by a high stringency wash in 0.1x SSC (65 °C).
Digoxigenin signals were detected by immunostaining
with alkaline phosphatase-conjugated Fab fragments
(Roche-Millipore Sigma), then developed with 4-nitro
blue tetrazolium chloride/5-bromo-4-chloro-3-indoyl
phosphate (Roche Millipore Sigma). The stained sections
were then mounted under #1 coverglass in Fluoromount
G (ThermoFisher Scientific). They were subsequently
imaged using a Leitz Laborlux S (25X PL Fluotar,
0.6NA) microscope and a Nikon DS-Ri1 camera, using
NIS-Elements BR 4.5 software (Nikon).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06954-8.

Additional file 1. Cuffdiff2 differential expression data. Tabs are for each
injury condition and time point vs. their relevant controls (N = 3
biological replicates, each). Tabs PW1–3) Tadpole spinal cord injury (SCI)
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hindbrain vs. age-matched, unoperated control hindbrain at 3 days, 1
week, and 3 weeks, respectively; PW4–6) Juvenile frog SCI hindbrain at 3
days, 1 week, and 3 weeks vs. unoperated control hindbrain; PW7–9) ju-
venile frog optic nerve crush (ONC) eye vs. the contralateral unoperated
eye at 3 days, 11 days, and 3 weeks, respectively. Abbreviations: chr,
chromosome; cntrl, control; FPKM, fragments per kilobase of transcript
per million mapped reads; ONC, optic nerve crush; p, the calculated prob-
ability for a single given gene that the observed difference represented
no change in expression (i.e., log2(fold change) = 0); q, false discovery
rate-adjusted (FDR) p-value [14]; significant, “yes” if q < 0.05; Tx, spinal
cord-transected; Unop, unoperated.

Additional file 2. DESeq2 differential expression data. Tabs are for each
injury condition and time point vs. their relevant controls (N = 3
biological replicates, each). Tabs PW1–3) Tadpole spinal cord injury (SCI)
hindbrain vs. age-matched, unoperated control hindbrain at 3 days, 1
week, and 3 weeks, respectively; PW4–6) Juvenile frog SCI hindbrain at 3
days, 1 week, and 3 weeks vs. unoperated control hindbrain; PW7–9) ju-
venile frog optic nerve crush (ONC) eye vs. the contralateral unoperated
eye at 3 days, 11 days, and 3 weeks, respectively. Columns: A - Gene
Name; B, baseMean - mean counts of all samples, normalized for sequen-
cing depth. It does not take into account gene length and is used for es-
timating the dispersion of a gene; C, log2FoldChange - log2(control/
experimental); in this analysis, negative values represent injury induced in-
creases relative to control); D, lfcSE - Standard Error of the log2 fold
change; E, stat - log2FoldChange/lfcSE; F, pvalue - the probability of the
null hypothesis for an individual gene (i.e., variance among replicates =
variance between conditions); G, padj - false discovery rate-adjusted
(FDR) p-value.

Additional file 3. Temporal patterns of gene expression and shared
injury-response genes between regenerative vs. non-regenerative tissues,
as determined by DESeq2. A) Regenerative tissues [i.e., SCI tadpole hind-
brain (SCI Tadpole) and ONC juvenile frog eye (ONC Juvenile)] shared
similar temporal patterns of numbers of significant (FDR < 0.05) differen-
tially expressed genes, which differed markedly from that of the non-
regenerative tissue [SCI juvenile frog hindbrain (SCI Juvenile)]. Whereas
the expression response of the two regenerative tissues peaked during
the mid recovery phase (1 week/11 days), that of the non-regenerative tis-
sue peaked at the early, post trauma phase (3 days). Up- and down-
regulated genes are shown in green and red, respectively; S & L gene
homeologs were tallied separately. B) Plot illustrating the percentage of
annotated genes that were significantly (FDR < 0.05) differentially
expressed with injury (100% = 24,382 genes). Additional_File2_Differentia-
l_Expression_Analysis_by_DESeq2.xlsm contains the DESeq2 output files
from which A and B were derived. C - E) UpSet plots illustrating the
number of genes overlapping between the samples indicated by the cir-
cles below each bar at 3 days (C), 7/11 days (D), and 3 weeks (E) after in-
jury. Numbers of shared up- and down-regulated genes are indicated
above and below each bar, respectively. The maximum number of over-
lapping genes between the two successfully regenerative tissues (DESR:
Differentially Expressed in Successful Regeneration) occurred during the
peak phase of regenerative CNS axon outgrowth.

Additional file 4. Manually Curated DESR Gene Data (Cuffdiff2). DESR
gene lists were manually curated and parsed into eleven functional
categories using a literature search. Tabs: 3 Day DESR, 11 Day 1 WK
DESR, 3 WK DESR: Manually curated spreadsheets for each time point,
3 days, 11 days/1 week, and 3 weeks, respectively, providing Cuffdiff2 data
for each gene for tadpole SCI hindbrain (even numbered rows) and
juvenile frog ONC (odd numbered rows). Column A, surgical condition;
Columns B - N, relevant Cuffdiff2 data for each gene under each
surgical condition (see
Additional_File1_Differential_Expression_Analysis_by_Cuffdif.xlsm for
abbreviations and column annotations). Gene symbols (Column B) in
green and red were up-regulated and down-regulated, respectively, in
successfully regenerative tissues relative to controls. Column O, primary
functional category (NA, gene has not been assigned a human ortholog);
Column P, secondary functional category, if relevant; Column Q, Manu-
ally curated notes, providing additional information on the expression be-
haviors of the other homeologs of this gene (even numbered rows), and
a statement on the function of the gene that lead to its being placed in

a particular functional category, followed by the literature reference sup-
porting it.

Additional file 5. Scatterplot representation of the Principal Component
Analyses (PCA) of gene expression profiles. Ellipses group biological
replicates for each indicated condition (experimentals, solid squares;
controls, empty squares), indicating variation among samples. A-C, PCA
of tadpole and juvenile hindbrain after spinal cord injury (SCI), and of
juvenile frog after optic nerve crush (ONC), respectively. In C, expression
profiles from the operated eye were compared with those of the
contralateral, unoperated eyes within the same animals. D, PCA of all 17
conditions combined, supporting the tissue-specific nature of gene ex-
pression profiles. Conditions were the same as in A-C, except that data
from eyes of animals receiving no injury was included (open triangles,
Frog Eye, Unop). E, PCA of tadpole and juvenile frog hindbrain samples
after spinal cord injury, supporting the conclusion that the differences in
gene expression profiles between the time points at which numbers of
differentially expressed genes reached their peaks (3 days in juvenile frog
hindbrain and 1 week in tadpole hindbrain) were more than just a kinetic
difference in the timing of expression of the same differentially expressed
genes. Abbreviations: ONC, optic nerve crush; PC1, principal component
axis 1; PC2, Principal Component axis 2; SCI, spinal cord injured; TX, spinal
cord transected; Unop ONC - unoperated eye, contralateral to the oper-
ated eye; Frog Eye, Unop - eyes from unoperated animals; wk., week.

Additional file 6. A summary list of all DESR genes, sorted by primary
functional category and time point of differential expression, along with
relevant references supporting the functional assignment. Note that
genes were assigned their human gene ortholog symbols, without
reference to whether they were L or S homeologs, or paralogs.

Additional file 7. KEGG pathway analysis of the DESR gene lists
revealed that 60% (69/115) of the Adipocytokine signaling pathway
genes were differentially expressed in at least one tissue at one time
point (p < 0.02). Tab. 1, Pathway: the Adipocytokine Signaling Pathway
(obtained from KEGG) and the complete associated gene list; Tab. 2,
Gene Expression Levels: Column B provides the list of genes and their
synonyms that are in this KEGG pathway (the underlined name is the
one provided in the figure in Tab. 1. Column C provides the gene symbol
and tissue for each gene. ΔFPKM [log2(fold change), injury condition/
control, Column D] for each differentially expressed gene in the pathway
(115 genes, S & L homeologs listed separately), as well as for other
isoforms for each gene. Columns D – L, the ΔFPKMs for each tissue at all
three time points are listed. For significant changes, either by p or q (or
both), and the raw FPKMs are listed in a cell comment for the ΔFPKMs.
The meanings of the different color highlights is given in the legend at
the top of the table. Tab. 3, Genes Not Found: is a list of 10 genes
(including synonyms) from the KEGG adipocytokine signaling pathway
that were not found in the Mayball annotations of the X. laevis
transcriptome. Abbreviations are as in
Additional_File1_Differential_Expression_Analysis_by_Cuffdif.xlsm.

Abbreviations
CNS: Central nervous system; DESR: Differentially expressed in successful
regeneration; FDR: False discovery rate; FPKM: Fragments per Kilobase
Million; KEGG: Kyoto Encyclopedia of Genes and Genomes; Mya: million years
ago; ONC: Optic nerve crush; ONI: Optic nerve injury; PCA: Principal
component analysis; PNS: Peripheral nervous system; SCI: Spinal cord injury;
X. laevis: Xenopus laevis
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