CDDpress

REVIEW ARTICLE

www.nature.com/cdd

W) Check for updates

Determinants of p53 DNA binding, gene regulation, and cell

fate decisions

13 2,3

Martin Fischer * and Morgan A. Sammons

© The Author(s) 2024

The extent to which transcription factors read and respond to specific information content within short DNA sequences remains an
important question that the tumor suppressor p53 is helping us answer. We discuss recent insights into how local information
content at p53 binding sites might control modes of p53 target gene activation and cell fate decisions. Significant prior work has
yielded data supporting two potential models of how p53 determines cell fate through its target genes: a selective target gene
binding and activation model and a p53 level threshold model. Both of these models largely revolve around an analogy of whether
p53 is acting in a “smart” or “dumb” manner. Here, we synthesize recent and past studies on p53 decoding of DNA sequence,
chromatin context, and cellular signaling cascades to elicit variable cell fates critical in human development, homeostasis, and

disease.
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FACTS

® Transcription factors contain DNA binding domains that
enable them to recognize and bind short DNA sequences.

® Sequence content and context in gene regulatory elements,
and how that influences transcription factor occupancy, plays
a crucial role in development and disease.

® p53 is a model transcription factor, due in part to decades of
investigation in the context of tumor suppression and cancer
and more recently as a critical barrier to successful gene
editing approaches.

® Similar to other transcription factors, p53 binding to the
genome is mediated by its DNA recognition motif, the p53
response element (p53RE), and is affected by DNA shape,
chromatin state, and co-factors [1, 2].

® p53 controls cell fate after DNA damage and other cellular
insults, such as the decision to undergo apoptosis or to
temporarily or permanently arrest the cell cycle, through its
ability to regulate gene expression.

OPEN QUESTIONS

® How do transcription factors like p53 “choose” which genomic
binding sites to occupy, which genes to regulate, and
ultimately, what cell fate is the best outcome at the cellular
and organismal level?

® How do DNA sequence, DNA shape, chromatin structure, p53
binding affinity and kinetics, and other non-DNA information
like cell and tissue context affect p53-dependent transcription
and cell fate?

® How do other transcription factors and co-factors support or
impede p53 activities on DNA and what influence do these
factors have on tumor suppression and other critical p53-
dependent activities?

® How can we best modulate a cell's apoptotic threshold to
make p53 activating cancer treatment strategies more
successful?

INTRODUCTION

Cell fate decisions by “smart” and “dumb” p53

The tumor suppressor p53 is best known as a transcription factor
that uses its target genes to control cell fate decisions in response
to cellular stress [3]. The regulation of p53 revolves around the E3-
ubiquitinase MDM2, which binds p53 and leads to its proteasomal
degradation in unstressed cells. Upon stress, p53 is post-
translationally modified to block its interaction with MDM2,
leading to elevated p53 levels [4] (Fig. 1A). Downstream of the
numerous pathways that can be driven by p53, cell cycle arrest
and apoptosis are arguably the most prominent fates a cell can
arrive at. Thus, p53 can control the fate of a cell to survive or die in
response to stress. Given the critical importance of cellular life-or-
death decisions to anti-cancer strategies, therapeutic genome
editing approaches, and our expanding view of aberrant p53
activity in developmental disorders, a large number of studies
have addressed the question of how the p53 signaling pathway
makes this ultimate decision about a cell’s life or death [5]. Similar
to most of these studies, this Review focuses on the role of full-
length p53 in mammals. Many p53 target genes have been
associated with different pathways and cell fates [6], such as p21
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Fig. 1 Two models for p53-dependent cell fate control. A p53 is kept inactive via MDM2-mediated E3 ligase activity, which itself is inhibited
by stress-dependent post-translational modifications (PTMs) to p53. In the absence of MDM2-mediated degradation, p53 protein levels rise
and p53 activates transcription of a broad gene network and dictates cell fate. B The “smart” model suggests that differential binding kinetics
of p53 to target gene regulatory sequences dictates cell fate decisions by p53. In this model, intrinsic sequence characteristics (DNA sequence,
shape) or modulation of p53 protein activity (PTMs, co-factor binding) drive p53-mediated transcription of selective genes controlling distinct
cell fates. C The “dumb” model suggests that p53 protein abundance dictates p53-dependent cell fates. In this model, p53 binds to all
permissive p53REs and broadly activates all target genes. As p53 protein levels rise, interactions between p53 and cell type and condition-

dependent factors ultimately determine cell fates.

(also known as CDKN1A), which promotes cell cycle arrest [7], and
puma (BBC3), which stimulates apoptosis [8, 9]. The specific
associations between target genes and cell fates prompted Karen
Vousden, in a review article published in 2000, to ask whether p53
is “smart” and can selectively activate specific target genes to
achieve a desired cell fate, or whether p53 is rather “dumb” and
tries to activate all of its target genes, leaving the ultimate cell fate
decisions to other signaling cues [10]. The distinction between
“smart” and “dumb” p53 serves as an analogy for our under-
standing of p53 functionality.

“smart” p53. For many years, p53 seemed rather “smart” to most
researchers in the field. For example, post-translational modifica-
tions (PTMs) [11-13] and co-factors [14, 15] were identified that
could help p53 to select specific target genes and ultimately tip
the balance of p53-dependent cell fate decisions from survival to
death and vice versa. A particularly intriguing concept, at least
from a genomic perspective, suggests that differences in p53
response elements (p53REs) result in differential DNA binding
affinity of p53 and varying activation kinetics of the associated
target genes [16], which may contribute to p53 favoring target
genes linked to cell cycle arrest over those linked to apoptosis
[17, 18] (Fig. 1B). Taken together, it is thought that “smart” p53
decodes different signals that a cell generates in response to
various stress conditions, and then p53 scans the genome for DNA
recognition sites that encode for specific target gene activation
and cell fates.

“dumb” p53. What if p53 was “dumb”? The strength of the p53RE,

i.e., the predicted affinity for p53 binding, has been found to have
very limited correlation with biological function [19]. Consistent
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with these data, p53 binds to most of its canonical target genes
relatively invariant across cell types and tissues [20-23]. Further-
more, p53 activates most of its target genes at the same time, and
cells undergo apoptosis when a cell type- and condition-
dependent threshold of p53 levels is reached [24, 25] (Fig. 1Q).
In summary, “dumb” p53 welcomes any activation signal that
increases its abundance and subsequently binds to any accessible
pP53RE, where it attempts to recruit Pol Il to induce transcription.

The terms “smart” and “dumb” succinctly describe the informa-
tion content that is present in various upstream signaling cues as
well as at different levels of the p53 signaling cascade. In the
following sections, we will explore our current understanding of
whether p53 behaves “smart” or “dumb”, with an initial focus on
target recognition and ending with cell fate decisions.

Information content of p53REs

Through its DNA binding domain, p53 binds a DNA sequence
motif known as the p53RE. The canonical p53RE is composed of
two decameric half-sites with the consensus sequence
RRRCWWGYYY (R=A/G, W = A/T, Y = C/T). Occasionally, multiple
p53REs exist in the same regulatory element such as in MDM2 [26]
or there exist multiple regulatory elements containing a p53RE
such as in CDKNTA [27] and GDF15 [28]. Both of these
arrangements may lead to combinatorial activity of p53 and
higher target gene expression. The specific p53RE DNA sequence
is variable and thus provides a means to encode critical
information. This information is critical in enabling p53 to act
“smart”. The information content of p53REs has been central to
several models of p53 function. For example, it had been
suggested that sequence differences in p53REs might determine
whether p53 induces or represses transcription at a given locus
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[29, 30], but these models were later shown to be inconsistent
with genome-wide data demonstrating that p53 is only associated
with transcriptional activation at its binding sites [6, 31-35]. In
general, the mechanisms that lead to the activation or repression
of many genes upon p53 activation still require more in-
depth study.

To make complex cell fate decisions through differential
activation of target genes, the DNA sequence of a p53RE must
encode information about its associated gene that p53 can
effectively decode (Fig. 1B). Indeed, an early model proposed that
p53REs direct p53 to regulate specific targets, such as cell cycle
arrest or pro-apoptotic targets, through sequence-specific binding
affinities and subsequent activation kinetics [16-18, 36]. Large-
scale binding data from ChIP-seq experiments show a positive
correlation between the occurrence of p53 binding and a p53RE’s
similarity to the consensus sequence [37], which provides
evidence that the DNA sequence of a p53RE can indeed influence
p53 binding. Consistent with these data, machine learning models
of DNA sequence features predict that p53-mediated activation is
best described by its similarity to the consensus sequence of the
p53RE [38, 39]. However, higher affinity binding sites do not
always predict higher transcriptional output [40]. An early
genome-wide analysis of p53RE DNA sequences and their
predicted affinity for p53 binding revealed only a very limited
correlation with the biological pathways of the associated genes
[19]. However, a number of recent studies have provided new
evidence that p53REs may encode high information content that
can help p53 make decisions. Based on an evaluation of 250
p53REs, the authors of one study found that the variable DNA
shape caused by the specific DNA sequence within p53REs may
allow p53 to interpret directionality [41], i.e., p53 decodes whether
to send Pol Il complexes up- or downstream of the p53RE. Two
other studies revived the early model in which p53REs instruct p53
to regulate cell cycle arrest or pro-apoptotic targets. While Qian
et al. [17] did not identify the specific DNA information that causes
p53 to favor cell cycle-associated p53REs over apoptosis-
associated p53REs, the two recent studies differ markedly in the
specific DNA features they identified that cause the different
activation kinetics. One study reported that specific base-pair
changes cause differences in the width of the minor or major DNA
groove, with narrower minor grooves resulting in higher p53
binding affinity and faster target gene activation [42]. The second
study found that the p53RE sequence affects DNA torsional
flexibility, with high flexibility allowing for more robust p53
binding and thus faster target gene activation [43]. However,
another recent study demonstrated that the DNA shape of p53REs
does not generally predict its activity [39]. Although the authors
have identified different mechanisms of action, they support a
model in which p53 acts “smart” by decoding information from
p53REs to differentially activate target genes associated with
different biological functions.

Many genomic DNA fragments with p53REs have been
evaluated using MPRAs (massively parallel reporter assays).
Studies have used DNA fragments that bind p53 [28, 38, 44],
have enhancer potential [45], or that represent essentially the
entire human genome [46] and all have found that p53REs
mediate significant transactivation potential. Based on these data,
the authors proposed a model in which p53 binding can be
sufficient to drive transcription [38, 46], implying a “dumb” p53
that attempts to activate each locus to which it binds.

In summary, the current literature contains conflicting results
regarding how p53 reads and interacts with p53REs and how this
translates into target gene activation. Notably, most of these
observations have been made using reporter assays and do not
fully recapitulate the in vivo context. These assays measure activity
driven by a p53RE lacking genomic context, such as gene distance,
other regulatory elements, and chromatin state. In the next
section, we discuss the extent to which these properties may
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influence how p53 interacts with p53REs to regulate associated
target genes.

Chromatin structure affects p53 binding and productivity
Chromatin, transcription, and cell fate are inextricably linked.
Chromatin structure can facilitate or impede biochemical pro-
cesses on DNA depending on the context, with nucleosomes
generally acting as a strong barrier to transcription factor binding
[47]. Gene regulatory regions occupied by nucleosomes tend to be
inactive due to this inability of transcription factors to recognize
and bind their cognate DNA elements. p53 is more complicated,
however, as it can recognize the p53RE in both naked DNA and in
certain nucleosomal contexts as part of its pioneer transcription
factor activity. When p53 interacts with nucleosome-bound
p53REs, it prefers p53REs oriented near nucleosome entry/exit
sites [48-51]. Conversely, p53RE positions near the nucleosome
dyad, i.e,, the center, strongly inhibit p53 binding, providing a clear
mechanism to control p53 binding and activity [48-51] (Fig. 2A).
Nucleosome rotational position preferences have also been
proposed to differentially regulate the activation and kinetics of
cell cycle control genes such as CDKN1A and apoptotic genes such
as BBC3/puma [52, 53], but this rotational positioning model has
not yet been tested on a high-throughput data basis.

Chromatin states may also explain observations of p53 binding
and perhaps, differences in cell fate choices. The number of
predicted p53 response elements (p53RE) in the human genome
greatly exceeds the number of experimentally observed binding
events, suggesting that DNA sequence alone is not sufficient to
direct p53 binding and activity [2]. The majority of unbound p53RE
are nucleosome-occupied, although the field currently lacks
sufficient experimental depth and detail to determine whether
these p53RE are in unfavorable rotational nucleosome positions or
other restrictive chromatin states. Extensive meta-analyses of p53
genomic binding have identified two groups of p53 binding with
potentially distinct activities: one invariant across cell types and
another with strong cell type dependence. p53 appears to activate
a common set of gene targets across cell types [21, 23, 32, 34, 54],
but also activates numerous cell type-dependent targets [23, 55].
Cell type-dependent p53 binding strongly correlates with cell
type-dependent differences in chromatin accessibility [22, 56], but
the extent to which cell type-dependent p53 binding is causal for
the observed differential activation of target genes is unclear.

Pioneer factors such as p53 recognize and bind to their DNA
motifs embedded in nucleosomes in certain contexts, but also
facilitate chromatin remodeling and nucleosome displacement.
When does p53 binding lead to chromatin remodeling? As is often
the case with chromatin structure, the answer depends on the
context. In human fibroblasts, there is little evidence for p53-
dependent chromatin remodeling 6 h after p53 stabilization with
Nutlin-3a [57], but after 12 h of treatment with the DNA-damaging
chemotherapeutic doxorubicin, p53 facilitates remodeling at a
select, but still limited, number of binding sites [44]. In mouse
embryonic stem cells (mESCs), p53 also led to increased chromatin
accessibility after 4 h of doxorubicin treatment [58]. In addition to
local chromatin regulation, p53 facilitates long-distance chromatin
interactions between distal enhancers and promoters to control
gene expression [59]. Still, many p53 binding locations remain
“closed”, raising the question of the contexts in which p53 might
remodel the local chromatin structure. Recent work in mouse
embryonic stem cells provides at least one answer, but also raises
additional questions. TRIM24 binds along with p53 to sites with
nucleosomes containing unmethylated lysine 4 of histone H3
(H3K4). TRIM24:p53 co-binding restricts p53-dependent chromatin
remodeling [58]. Conversely, transcription-associated methylation
of H3K4 inhibits TRIM24 activity, thus permitting p53-dependent
chromatin remodeling and activation of downstream gene
targets. p53 binds to regions independent of TRIM24 that can
be variably remodeled, suggesting that additional, as-of-yet
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Fig.2 Factors modulating p53 engagement with the genome and activation of target genes. A p53 recognizes and binds to its RE in naked
DNA and when found in certain rotational positions within nucleosomal DNA, leading to p53-dependent nucleosome remodeling and gene
activation (top panel). The presence of a p53RE in other nucleosome contexts is non-permissive and prevents p53 binding and downstream
gene activation (bottom panel). B Co-factors and chromatin remodelers can alter the local chromatin landscape to facilitate or impede p53
binding to its response element. Factors, like TRIM24, inhibit p53 activity (top panel), whereas other factors, like ATRX:DAXX and p63, promote
p53 binding through nucleosome displacement (bottom panel). € Numerous p53 interacting proteins, e.g., p300 or iASPP, can alter p53:DNA
binding kinetics and promote or repress p53-dependent transcription. D Co-binding of other transcription factors, e.g., SP1 or ATF3, to

promoters and enhancers alters p53-dependent transcriptional activity.

unknown, cofactors also mediate p53-dependent chromatin
remodeling. One such factor is the H3 chaperone ATRX:DAXX
and its modulation of histone occupancy, which facilitates
differential p53 binding and chromatin remodeling [60] (Fig. 2B).
The breadth and impact of p53 pioneer activity, from differential
binding to differential remodeling activity and target gene
induction, is only beginning to be elucidated.

Although we still lack sufficiently detailed genome-wide
analyses of how p53 reads and interacts with the chromatin, the
current data provide the first insights into the extent to which p53
is “smart” and decodes the information itself, or whether it is
“dumb” and just tries to perform its trans-activator function
whenever possible. While the current data could be read to
suggest that p53 is quite “smart” and can discriminate and bind
p53REs in multiple nucleosomal contexts, the data may actually
show that the chromatin structure, and in particular nucleosome
positioning, can control p53’s ability to bind to and trans-activate a
given genomic locus. In these cases, p53 does not appear to read
or decode the chromatin state, but its “dumb” action is controlled
by other factors that read or organize chromatin. For many sites,
however, it remains unclear how p53 binding and productivity are
regulated, leaving room for “smart” actions by p53.

SPRINGER NATURE

In general, the productivity of p53 binding sites in the genome
is influenced not only by the individual p53RE DNA sequence and
chromatin state, but also by other factors that are located nearby.
In the next section, we discuss links between such co-factors and
their target-specific effects in the p53 transcriptional program.

Co-factors influence productivity and kinetics at p53

binding sites

Multiple co-factors and other transcription factors influence p53's
ability to activate transcription at a given locus. In the previous
section, we discussed how TRIM24 and ATRX:DAXX can affect
p53's ability to increase DNA accessibility and to activate
transcription (Fig. 2B). Many additional factors have been
identified that locally affect p53 function (Fig. 2C), including
traditional co-activators like p300, which directly modifies p53 and
the local chromatin environment to regulate p53-dependent
transcription [61]. The ASPP (ankyrin-repeat, SH3-domain, and
proline-rich-region-containing protein) family consists of three
members, ASPP1, ASPP2, and iASPP. ASPP1 and ASPP2 have been
shown to enhance p53 binding to promoters and activation of
target genes involved in apoptosis [14], while iASPP has the
opposite effect, inhibiting this process [62]. While it is unclear how
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ASPP1 and ASPP2 direct p53 towards target genes involved in
apoptosis, iASPP has been shown to bind to p53 and perturb its
interaction with p53REs, resulting in reduced binding affinity and
altered selectivity [63]. Another co-factor, DAZAP2, binds to a
subset of p53 targets and inhibits p53 at these sites, leading to
reduced activation of the targets by p53, but it is unclear how
DAZAP2 selects targets [64]. Non-protein cofactors, such as long
non-coding RNAs, have a role up and downstream of p53 [65], but
how they may affect local p53 activity remains largely unexplored.
Interestingly, it has been shown that differences in the local
assembly of the preinitiation complexes that position Pol Il to
transcribe the gene have been shown to be caused by different
core promoter arrangements that cause p53 to rapidly induce
CDKN1A (p21) of short duration and slowly induce FAS of long
duration [66]. Such differences could contribute to differences in
the magnitude and kinetics of p53 target gene activation and
ultimately influence cell fate decisions.

Transcription factors have also been shown to cooperate with
p53 locally (Fig. 2D). For example, SP1 and ATF3 have been shown
to cooperate with p53 in target gene activation when their DNA
binding sites are in close proximity [28]. A particularly critical
regulator of p53 responses is its sibling p63 (ANp63), which is
predominantly expressed in basal epithelia. p63 can bind to most
sites that p53 can bind to [37], and it enables p53 to bind to
specific sites that would otherwise be inaccessible to p53 [56, 67]
(Fig. 2B). Combinatorial activity of transcription factors at
regulatory elements is a well-studied phenomenon. This concept
is comparatively understudied in the p53 network, with opposing
views on the influence of local transcription factors in driving p53-
dependent activities on DNA [27, 28, 38, 56]. Recent studies
combining high-throughput genomic screening and modern
computational approaches like deep and machine learning
confirmed a long held truth about p53: regulatory elements
containing a p53RE, and thus exhibiting binding of p53, drive high
levels of transcription [39, 46]. While the specific roles for other
transcription factors and co-factors influencing p53RE productivity
were not specifically investigated, this blend of computational and
experimental power will no doubt provide new insight into p53-
dependent cell fate decisions.

To summarize, p53 binding and the ability of p53 to
transactivate a given locus depend on multiple layers of
information, ranging from the DNA sequence of the p53RE, to
the nucleosomal context in which the p53RE is located, to other
factors that function at the given locus. All of these properties can
influence the transcriptional program of p53. They could help a
“smart” p53 to decide on target gene activation and cell fate, or
they could instruct a “"dumb” p53 towards preferred outcomes. In
the last section, we will discuss our current understanding of the
extent to which the p53 transcriptional program is affected on a
genome-wide scale and how this translates into different cell fate
decisions.

Gene regulation and cell fate decisions by p53
The concept that p53 can differentially activate target genes
involved in different biological processes, such as cell cycle arrest
and apoptosis, to achieve desired cell fates is fascinating. It is
largely based on relatively low throughput analyses that have
examined only a limited number of p53 target genes in cell
populations. Fortunately, multiple high throughput and single cell
analyses have become available and we can take an unbiased look
at whether the magnitude or kinetics of p53 target gene induction
varies between different modes of p53 activation and treatment
durations, and how that relates to the subsequent fate of the cells.
A number of studies have evaluated the differential kinetics of
p53 target gene activation. In single cells, p53 protein levels have
been shown to rise in pulses in response to DNA damage, an
effect that cannot be observed when cell populations are
evaluated. These rapid changes in p53 protein levels have been
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shown to be largely driven by negative feedback regulation of p53
by MDM2 and the PPM1D phosphatase [68]. The different
dynamics of p53 protein levels have been associated with
different cell fates. For example, y-irradiation resulted in p53
pulses and cell cycle arrest, and when these pulses were sustained
by pharmacological treatment with the MDM2 inhibitor Nutlin-3,
cells underwent apoptosis [69]. Importantly, the different p53
dynamics and cell fates were associated with different p53 target
gene expression. Pulsed and sustained p53 led to the induction of
cell cycle arrest genes, such as CDKNTA, GADD45A, and XPC, and
negative feedback regulators, such as MDM2 and PPMID, but
sustained p53 alone led to the activation of inducers of apoptosis,
such as APAF1, TP53AIP1, and BAX, and senescence, such as PML
and YPEL3 [69]. Similar results were obtained with different doses
and durations of treatment with the DNA-damaging chemother-
apeutic agent doxorubicin [70]. Follow-up studies evaluated a
much larger number of p53 target genes and used time-series
gene expression analysis to determine the effect of p53 levels that
vary over time, ie, p53 pulses. These studies showed that p53
indiscriminately binds and activates its target genes in response to
DNA damage, without enrichment for specific biological functions,
and that subsequent differences in temporal RNA levels can be
explained by differences in RNA degradation rates [20, 25, 71]. This
is supported by previous data from a mouse model in which the
p53-MDM2 feedback loop was disturbed by removing the p53REs
from the Mdm2 gene, resulting in increased p53 activity in
response to DNA damage and induction of apoptosis, while
simultaneously increasing the expression of both apoptotic and
cell cycle arrest-associated p53 target genes [72]. Although there
are clear differences in how p53 activates individual promoters
[73-75], genes with such promoter features do not appear to be
enriched for specific biological functions. This notion is also
supported by earlier transcriptome analyses that failed to identify
features that discriminate between p53 target genes involved in
cell cycle arrest and apoptosis [24, 33] and instead suggested a
rather simple model for cell fate decisions that is based on
thresholds of p53 levels [24] (Fig. 1C). Consistent with p53-
dependent transcript levels, low- and high-throughput chromatin
immunoprecipitation (ChIP) data show that the p53 binding signal
varies between promoters with p53REs but this difference does
not enrich for target genes involved in specific biological functions
[20, 24, 76].

In summary, the well-characterized biophysical differences in
how p53 interacts with different p53REs in different nucleosomal
contexts do not appear to translate into a selective mode of target
gene binding or activation by p53 that has a measurable effect on
cell fate. Differences in promoter properties are clearly important
for the regulation of individual promoters and their associated
genes, but current data suggest that this is not overly critical for
cell fate decisions after p53 induction.

Other factors, such as death receptor signaling [77] and levels of
the transcription factors E2F1 [78] and MYC [79], have also been
shown to have threshold mechanisms that determine whether or
not apoptosis is induced. A cell’s decision to induce apoptosis is
largely determined by the balance of pro- and anti-apoptotic
factors, the levels of which vary between cell types and contexts.
Such balances provide actionable opportunities for therapeutic
intervention to achieve more successful cancer treatment
strategies. Differences in cells, such as cell type and context,
cause different anti-apoptotic factors to be present at levels close
to a tipping point toward induction of apoptosis and thus such
cells may be more or less sensitive to specific interventions (Fig. 3).
Over the years, several studies have shown that changes in anti-
apoptotic factors can tip a cell toward apoptosis after p53
activation. Examples include BCL-2/XL [80, 81], the inhibitors of
apoptosis (IAP) family [82], and the pseudo-caspase FLIP(L) [83].
Indeed, inhibition of BCL-2 and BCL-XL has been shown to be a
potent anticancer strategy when combined with p53 activation
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Cell fate decisions based on p53 levels
and cell type- and context-dependent thresholds

Apoptosis threshold T

cell type- and context-dependent
threshold modifiers

p53 levels

anti-apoptotic, pro-proliferative
e.g., BCL-2, BCL-XL, IAP, FLIP(L), KITLG

proliferation apoptosis

Fig. 3 Cell fate decisions based on p53 concentration and cell type- and context-dependent thresholds. Under low stress conditions, p53
protein expression is below the threshold for cell cycle arrest or apoptosis, allowing cells to proliferate. Cell cycle arrest occurs when p53 levels
reach a specific threshold, defined by a tug-of-war between pro- and anti-proliferative factors, the levels of which depend on context such as
cell type and nutrient availability. When p53 levels are high enough, cells undergo p53-dependent apoptosis. The threshold for apoptosis is
determined by a tug-of-war between pro- and anti-apoptotic factors that vary in their abundance depending on the cellular context.
Importantly, these factors represent therapeutically actionable opportunities to tip the balance toward apoptosis, a desired outcome in cancer

treatment regimens.

[84, 85]. Another therapeutically promising example is the
pathway of the integrated stress response. The gene regulatory
network of ATF4, a transcription factor that is the key mediator of
the integrated stress response, overlaps with the gene regulatory
network of p53, specifically sharing pro-apoptotic targets [86].
Recently, PPM1D inhibition has been shown to induce ATF4
accumulation and activation in addition to stabilizing p53.
Importantly, a combination treatment with PPM1D and MDM2
inhibitors resulted in a potent induction of apoptosis [87],
presumably due to increased expression of pro-apoptotic target
genes.

Notably, the levels of anti-apoptotic proteins can be increased
in response to p53 over time, thereby raising the threshold for
apoptosis induction and making the rate of p53 accumulation
relevant to cell fate [82, 88] (Fig. 3). p53 leads to a cell cycle arrest
fate when oncogenes are hyperactive in normal human fibroblasts
or when HCT116 colon cancer cells are exposed to genotoxic
damage [27, 89]. When one of the p53REs of CDKNTA was
removed, cells failed to arrest and continued to proliferate,
showing that the p53 levels were insufficient to induce apoptosis
in this context [27]. In HCT116 cells, knockout of CDKNTA changed
the cellular context to favor apoptosis upon genotoxic damage.
Mutation of a p53RE controlling a single pro-apoptotic p53 target,
BBC3 (Puma), tipped the balance back against apoptosis and
allowed the cells to proliferate [89]. In addition to the well-known
cell cycle arrest and pro-apoptotic genes, p53 targets also include
anti-apoptotic, pro-proliferative genes [6]. One such example is
the p53 target gene KITLG. The p53RE of the KITLG gene has been
shown to harbor a single nucleotide polymorphism (SNP) that is
associated with reduced p53 binding and KITLG expression and
increased cancer risk, presumably because the threshold for
apoptosis induction is increased in individuals carrying this SNP
[90].

Threshold-based mechanisms are clearly not a feature of
“smart” p53, but they allow cells to combine a greater number
of signals and are less fragile because they are less complex.

Conclusions and perspective

Over the past years, we have begun to understand the properties
that allow p53 to bind to DNA in different chromatin contexts and
the co-factors that modulate p53’s ability to transactivate a given
locus and control cell fate, although much remains unknown. Yet,
when do the well-supported biophysical differences between
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individual p53 target gene promoters translate into measurable
differences in mRNA expression and cell fate? We find that current
genomic and transcriptomic data suggest that information
content of p53REs is rather low. This could be explained by
differences in scales: small differences in p53 binding kinetics and
affinity may not be overly relevant in a cell when many other
factors are acting on the DNA and p53 has a relatively long time to
bind and recruit Pol II. The ability to combine genome-scale assays
examining the entirety of sequence space with precise genome
editing approaches to validate observations in more native
contexts will help resolve these questions. For now, most available
evidence suggests that p53 is “dumb” rather than “smart”, trying
to transactivate any locus it can bind to (Fig. 1C), instead of
decoding information from DNA to selectively activate its targets.
We find that it makes sense for a cell to determine its own fate
based on simple and robust threshold-based mechanisms rather
than on complex and thus fragile p53RE decoding strategies. From
an evolutionary perspective, it is difficult to imagine a benefit for
shaping and preserving nuances in p53REs to make life-or-death
decisions. In the end, the tumor suppressive capacity of p53 is
strong no matter whether it is “smart” or “dumb”. However,
“dumb” processes might forgive errors such as minor mutations
more easily and therefore may be more robust and favored during
evolution - at least when it comes to critical decisions such as
whether to live or die.
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